ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи a и b – две данные стороны треугольника. D – точка на стороне BC треугольника ABC. B треугольники ABD, ACD вписаны окружности, и к ним проведена общая внешняя касательная (отличная от BC), пересекающая AD в точке K. Докажите, что длина отрезка AK не зависит от положения точки D на BC. Доказать, что существует бесконечно много таких составных n, что 3n–1 – 2n–1 кратно n. Грани выпуклого многогранника – подобные треугольники. Окружность радиуса 2 проходит через середины трёх сторон треугольника ABC, в котором углы при вершинах A и B равны 30° и 45° соответственно. При каких натуральных n найдутся такие положительные рациональные, но не целые числа a и b, что оба числа a + b и an + bn – целые? Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося? В шестиугольнике ABCDEF AB = BC, CD = DE, EF = FA и ∠A = ∠C = ∠E. Пятизначное число называется неразложимым, если оно не раскладывается в произведение двух трёхзначных чисел. В остроугольном треугольнике ABC проведены высоты AHA,
BHB и CHC. Постройте параллелограмм ABCD, если на плоскости отмечены три точки: середины его высот BH и BP и середина стороны AD. Сумма расстояний между серединами противоположных сторон четырёхугольника равна его полупериметру. Докажите, что этот четырёхугольник — параллелограмм. В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]
В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.
Докажите, что в прямоугольном треугольнике медиана, проведённая к гипотенузе, равна её половине.
Окружность, вписанная в прямоугольный треугольник ABC, касается катетов AC и BC в точках B1 и A1, а гипотенузы – в точке C1. Прямые C1A1 и C1B1 пересекают CA и CB соответственно в точках B0 и A0. Докажите, что AB0 = BA0.
Дан прямоугольный треугольник ABC с прямым углом C. Пусть BK – биссектриса этого треугольника. Описанная окружность треугольника AKB пересекает вторично сторону BC в точке L. Докажите, что CB + CL = AB.
Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке