ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Петя задумал натуральное число и для каждой пары его цифр выписал на доску их разность. После этого он стер некоторые разности, и на доске остались числа 2, 0, 0, 7. Какое наименьшее число мог задумать Петя?

   Решение

Задачи

Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 1221]      



Задача 111780

Темы:   [ Теория графов (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10

25 мальчиков и несколько девочек собрались на вечеринке и обнаружили забавную закономерность. Если выбрать любую группу не меньше чем из 10 мальчиков, а потом добавить к ним всех девочек, знакомых хотя бы с одним из этих мальчиков, то в получившейся группе число мальчиков окажется на 1 меньше, чем число девочек. Докажите, что некоторая девочка знакома не менее чем с 16 мальчиками.

Прислать комментарий     Решение

Задача 111787

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

Петя задумал натуральное число и для каждой пары его цифр выписал на доску их разность. После этого он стер некоторые разности, и на доске остались числа 2, 0, 0, 7. Какое наименьшее число мог задумать Петя?
Прислать комментарий     Решение


Задача 115445

Темы:   [ Турниры и турнирные таблицы ]
[ Подсчет двумя способами ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10,11

В футбольном турнире участвовало 20 команд (каждая сыграла с каждой из остальных по одному матчу). Могло ли в результате оказаться так, что каждая из команд-участниц выиграла столько же матчей, сколько сыграла вничью?

Прислать комментарий     Решение

Задача 115478

Темы:   [ Десятичная система счисления ]
[ Процессы и операции ]
Сложность: 3+
Классы: 6,7,8,9

Шестизначное табло в автомобиле показывает, сколько километров автомобиль проехал с момента покупки. Сейчас на нем высвечивается число, в котором есть четыре "семёрки". Может ли оказаться так, что еще через 900  км на табло высветится число, в котором ровно одна "семерка"?
Прислать комментарий     Решение


Задача 115950

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Процессы и операции ]
Сложность: 3+
Классы: 8,9,10

Двадцать детей – десять мальчиков и десять девочек – встали в ряд. Каждый мальчик сказал, сколько детей стоит справа от него, а каждая девочка – сколько детей стоит слева от неё. Докажите, что сумма чисел, названных мальчиками, равна сумме чисел, названных девочками.

Прислать комментарий     Решение

Страница: << 104 105 106 107 108 109 110 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .