Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 20 задач
Версия для печати
Убрать все задачи

Две стороны треугольника имеют длины 6 и 10, причём угол между ними острый. Площадь этого треугольника равна 18. Найдите третью сторону треугольника.

Вниз   Решение


Указать все денежные суммы, выраженные целым числом рублей, которые могут быть представлены как чётным, так и нечётным числом денежных билетов. (В обращении имелись билеты достоинством в 1, 3, 5, 10, 25, 50 и 100 рублей.)

ВверхВниз   Решение


Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.

ВверхВниз   Решение


Двое играют на треугольной доске (см. рис.), закрашивая по очереди на ней треугольные клеточки. Одна клетка (начальная) уже закрашена перед началом игры.
Первым ходом закрашивается клеточка, граничащая (по стороне) с начальной, а каждым следующим ходом — клетка, граничащая с только что закрашенной. Повторно клетки красить нельзя. Тот, кто не может сделать ход, проигрывает. Кто — начинающий или его соперник — победит в этой игре, как бы ни играл его партнёр?
Рассмотрите случаи:
а) Начальная клетка — угловая, поле любого размера;
б) Поле и начальная клетка как на рисунке к этому заданию;
в) Общий случай: поле любого размера, и начальная клетка в нём произвольная.
г) Дополнительное задание. Можно подумать, что начальная клетка определяет исход партии независимо от действий игроков. Нарисуйте, однако, на каком-нибудь поле примеры таких двух партий с одной и той же начальной клеткой, чтобы в первой побеждал начинающий, а во второй — его партнёр. Для удобства нумеруйте клетки: начальная — 0, первым ходом красится клетка 1, вторым — 2 и т. д.


ВверхВниз   Решение


Сторона основания правильной четырёхугольной пирамиды равна a . Боковая грань образует с плоскостью основания угол 45o . Найдите высоту пирамиды.

ВверхВниз   Решение


На основании AB равнобедренного треугольника ABC даны точки A1 и B1. Известно, что   AB1 = BA1.
Докажите, что треугольник AB1C равен треугольнику BA1C.

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1. Докажите, что площадь одного из треугольников  AB1C1, A1BC1, A1B1C не превосходит:
а) SABC/4;
б)  SA1B1C1.

ВверхВниз   Решение


Вершины правильного треугольника расположены на сторонах AB, CD и EF правильного шестиугольника ABCDEF.
Докажите, что эти треугольник и шестиугольник имеют общий центр.

ВверхВниз   Решение


В четырёхугольнике ABCD найдите такую точку E , для которой отношение площадей треугольников EAB и ECD было равно 1:2, а треугольников EAD и EBC — 3:4, если известны координаты всех его вершин: A(-2;-4) , B(-2;3) , C(4;6) , D(4;-1) .

ВверхВниз   Решение


Кащей Бессмертный загадывает три натуральных числа: a, b, c. Иван Царевич должен назвать ему три числа: XYZ, после чего Кащей сообщает ему сумму aX + bY + cZ, затем Иван Царевич говорит еще один набор чисел xyz и Кащей сообщает ему сумму ax + by + cz. Царевич должен отгадать задуманные числа, иначе ему отрубят голову. Какие числа он должен загадать, чтобы остаться в живых?

ВверхВниз   Решение


Собрались 2n человек, каждый из которых знаком не менее чем с n присутствующими. Доказать, что можно выбрать из них четырёх человек и рассадить их за круглым столом так, что при этом каждый будет сидеть рядом со своими знакомыми (n$ \ge$2).

ВверхВниз   Решение


Докажите, что произведения отрезков пересекающихся хорд окружности равны между собой.

ВверхВниз   Решение


Диагонали описанной трапеции ABCD с основаниями AD и BC пересекаются в точке O. Радиусы вписанных окружностей треугольников  AOD, AOB, BOC и COD равны  r1, r2, r3 и r4 соответственно. Докажите, что $ {\frac{1}{r_1}}$ + $ {\frac{1}{r_3}}$ = $ {\frac{1}{r_2}}$ + $ {\frac{1}{r_4}}$.

ВверхВниз   Решение


На стороне треугольника взяты четыре точки K, P, H и M, являющиеся соответственно серединой этой стороны, основанием биссектрисы противоположного угла треугольника, точкой касания с этой стороной вписанной в треугольник окружности и основанием соответствующей высоты. Найдите KH, если KP = a, KM = b.

ВверхВниз   Решение


Известно, что некоторая точка M в пространстве равноудалена от вершин плоского многоугольника. Докажите, что этот многоугольник является вписанным, причём центр его описанной окружности есть ортогональная проекция точки M на плоскость многоугольника.

ВверхВниз   Решение


Один из острых углов прямоугольного треугольника равен 25o. Под каким углом виден каждый его катет из центра описанной окружности?

ВверхВниз   Решение


Найдите площадь треугольника ABC, если AC = 3, BC = 4, а медианы AK и BL взаимно перпендикулярны.

ВверхВниз   Решение


Докажите, что прямые Симсона двух диаметрально противоположных точек описанной окружности треугольника ABC перпендикулярны, а их точка пересечения лежит на окружности девяти точек (см. задачу 5.106).

ВверхВниз   Решение


Найдите все такие пары квадратных трёхчленов  x² + ax + bx² + cx + d,  что a и b – корни второго трёхчлена, c и d – корни первого.

ВверхВниз   Решение


Окружности с центрами O1 и O2 касаются внешним образом в точке C . Прямая касается этих окружностей в различных точках A и B соответственно. Найдите угол AO2B , если известно, что tg ABC = .

Вверх   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 312]      



Задача 111507

Темы:   [ Общая касательная к двум окружностям ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Длина внешней касательной окружностей радиусов r и R в два раза больше длины внутренней касательной. Найдите расстояние между центрами этих окружностей.
Прислать комментарий     Решение


Задача 115564

Темы:   [ Окружность, вписанная в угол ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Один из смежных углов с вершиной A вдвое больше другого. В эти углы вписаны окружности с центрами O1 и O2 . Найдите углы треугольника O1AO2 , если отношение радиусов окружностей равно .
Прислать комментарий     Решение


Задача 115573

Темы:   [ Касающиеся окружности ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Окружности с центрами O1 и O2 касаются внешним образом в точке C . Прямая касается этих окружностей в различных точках A и B соответственно. Найдите угол AO2B , если известно, что tg ABC = .
Прислать комментарий     Решение


Задача 52731

Темы:   [ Две касательные, проведенные из одной точки ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Из одной точки проведены к окружности две касательные. Длина каждой касательной равна 12, а расстояние между точками касания равно 14,4. Найдите радиус окружности.

Прислать комментарий     Решение


Задача 52790

Темы:   [ Признаки и свойства касательной ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Окружность касается одного из катетов равнобедренного прямоугольного треугольника и проходит через вершину противолежащего острого угла. Найдите радиус окружности, если её центр лежит на гипотенузе треугольника, а катет треугольника равен a.

Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 312]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .