Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
  а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
  б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
  в) Могут ли длины отрезков равняться 4, 4 и 3?

Вниз   Решение


Игрок на компьютере управляет лисой, охотящейся за двумя зайцами. В вершине A квадрата ABCD находится нора: если в нее, в отсутствие лисы, попадает хотя бы один заяц, то игра проиграна. Лиса ловит зайца, как только оказывается с ним в одной точке (возможно, в точке A ). Вначале лиса сидит в точке C , а зайцы – в точках B и D . Лиса бегает повсюду со скоростью не больше v , а зайцы – по лучам AB и AD со скоростью не больше 1. При каких значениях v лиса сможет поймать обоих зайцев?

ВверхВниз   Решение


Натуральные числа покрашены в N цветов. Чисел каждого цвета бесконечно много. Известно, что цвет полусуммы двух различных чисел одной чётности зависит только от цветов слагаемых.
  а) Докажите, что полусумма чисел одной чётности одного цвета всегда окрашена в тот же цвет.
  б) При каких N такая раскраска возможна?

ВверхВниз   Решение


У игрока есть m золотых и n серебряных монет. В начале каждого раунда игрок ставит какие-то монеты на красное, какие-то на чёрное (можно вообще ничего не ставить на один из цветов, часть монет можно никуда не ставить). В конце каждого раунда крупье объявляет, что один из цветов выиграл. Ставку на выигравший цвет крупье отдаёт игроку, удваивая в ней количество монет каждого вида, а ставку на проигравший цвет забирает себе. Игрок хочет, чтобы монет одного вида у него стало ровно в три раза больше, чем другого (в частности, его устроит остаться совсем без денег). При каких m и n крупье не сможет ему помешать?

ВверхВниз   Решение


Покажите, что существует выпуклая фигура, ограниченная дугами окружностей, которую можно разрезать на несколько частей и из них сложить две выпуклые фигуры, ограниченные дугами окружностей.

ВверхВниз   Решение


Среди вершин любого ли многогранника можно выбрать четыре вершины тетраэдра, площадь проекции которого на любую плоскость составляет от площади проекции (на ту же плоскость) исходного многогранника: а) больше, чем , б) не меньше, чем , в) не меньше, чем ?

ВверхВниз   Решение


На сторонах треугольника ABC внешним образом построены подобные треугольники: Δ A'BC Δ B'CA Δ C'AB . Докажите, что в треугольниках ABC и A'B'C' точки пересечения медиан совпадают.

ВверхВниз   Решение


Стороны треугольника равны 17, 17, 30. Найдите радиусы вписанной и вневписанных окружностей.

ВверхВниз   Решение


На дуге AC описанной окружности правильного треугольника ABC взята точка M, отличная от C, P – середина этой дуги. Пусть N – середина хорды BM, K – основание перпендикуляра, опущенного из точки P на MC. Докажите, что треугольник ANK правильный.

ВверхВниз   Решение


Высоты AA1, BB1, CC1 и DD1 тетраэдра ABCD пересекаются в центре H сферы, вписанной в тетраэдр A1B1C1D1.
Докажите, что тетраэдр ABCD – правильный.

ВверхВниз   Решение


На сторонах AB, AC, BC равностороннего треугольника ABC, сторона которого равна 2, выбрали точки C1, B1, A1 соответственно.
Какое наибольшее значение может принимать сумма радиусов окружностей, вписанных в треугольники AB1C1, A1BC1, A1B1C.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 243]      



Задача 98593

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Внутри треугольника ABC взята точка P так, что  ∠ABP = ∠ACP,  а  ∠CBP = ∠CAP. Докажите, что P – точка пересечения высот треугольника ABC.

Прислать комментарий     Решение

Задача 108128

Темы:   [ Ортоцентр и ортотреугольник ]
[ Признаки и свойства параллелограмма ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 4-
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты AHA, BHB и CHC.
Докажите, что треугольник с вершинами в ортоцентрах треугольников AHBHC, BHAHC и CHAHB равен треугольнику HAHBHC.

Прислать комментарий     Решение

Задача 108639

Темы:   [ Ортоцентр и ортотреугольник ]
[ Три точки, лежащие на одной прямой ]
[ Свойства симметрий и осей симметрии ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Вокруг остроугольного треугольника ABC описана окружность. Продолжения высот треугольника, проведённых из вершин A и C, пересекают окружность в точках E и F соответственно, D произвольная точка на (меньшей) дуге AC, K – точка пересечения DF и AB, L – точка пересечения DE и BC. Докажите, что прямая KL проходит через ортоцентр треугольника ABC.

Прислать комментарий     Решение

Задача 108948

Темы:   [ Ортоцентр и ортотреугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты AA1, BB1 и CC1. На отрезке A1C1 выбрали такие точки A2 и C2, что отрезок B1A2 делится высотой CC1 пополам и пересекает высоту AA1 в точке K, а отрезок B1C2 делится высотой AA1 пополам и пересекает высоту CC1 в точке L. Докажите, что KL || AC.

Прислать комментарий     Решение

Задача 115615

Темы:   [ Ортоцентр и ортотреугольник ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Две касательные, проведенные из одной точки ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9

На сторонах AB, AC, BC равностороннего треугольника ABC, сторона которого равна 2, выбрали точки C1, B1, A1 соответственно.
Какое наибольшее значение может принимать сумма радиусов окружностей, вписанных в треугольники AB1C1, A1BC1, A1B1C.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 243]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .