ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки D и E расположены на стороне AC треугольника ABC. Прямые BD и BE разбивают медиану AM треугольника ABC на три равных отрезка.
Найдите площадь треугольника BDE, если площадь треугольника ABC равна 1.

   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 1396]      



Задача 111574

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Равные треугольники. Признаки равенства ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9

Биссектриса, медиана и высота некоторого треугольника, проведённые из трёх разных вершин, пересекаются в одной точке и делят этот треугольник на шесть треугольников (см.рисунок). Площади трёх закрашенных треугольников равны. Верно ли, что исходный треугольник равносторонний?

Прислать комментарий     Решение

Задача 115505

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Признаки подобия ]
[ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9,10

Дана трапеция ABCD с основаниями  AD = a  и  BC = b.  Точки M и N лежат на сторонах AB и CD соответственно, причём отрезок MN параллелен основаниям трапеции. Диагональ AC пересекает этот отрезок в точке O. Найдите MN, если известно, что площади треугольников AMO и CNO равны.

Прислать комментарий     Решение

Задача 115639

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Точки D и E расположены на стороне AC треугольника ABC. Прямые BD и BE разбивают медиану AM треугольника ABC на три равных отрезка.
Найдите площадь треугольника BDE, если площадь треугольника ABC равна 1.

Прислать комментарий     Решение

Задача 115857

Темы:   [ Формулы для площади треугольника ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10,11

Пусть a, b, c – длины сторон произвольного треугольника; p – полупериметр; r – радиус вписанной окружности. Докажите неравенство

Прислать комментарий     Решение

Задача 116074

Темы:   [ Перегруппировка площадей ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Подобные треугольники (прочее) ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 9,10,11

На сторонах AB и BC треугольника ABC взяты точки M и K соответственно так, что  SKMC + SKAC = SABC.
Докажите, что все такие прямые MK проходят через одну точку.

Прислать комментарий     Решение

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 1396]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .