Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Докажите, что площадь треугольника равна удвоенному квадрату радиуса окружности, описанной около треугольника, умноженному на произведение синусов углов треугольника, т.е.

S$\scriptstyle \Delta$ = 2R2sin$\displaystyle \alpha$sin$\displaystyle \beta$sin$\displaystyle \gamma$,

где $ \alpha$, $ \beta$, $ \gamma$ — углы треугольника, а R — радиус его описанной окружности.

Вниз   Решение


В окружность вписаны три правильных многоугольника, число сторон каждого последующего вдвое больше, чем у предыдущего. Площади первых двух равны S1 и S2. Найдите площадь третьего.

ВверхВниз   Решение


Все целые числа от -33 до 100 включительно расставили в некотором порядке и рассмотрели суммы каждых двух соседних чисел. Оказалось, что среди них нет нулей. Тогда для каждой такой суммы нашли число, ей обратное. Полученные числа сложили. Могло ли в результате получится целое число?

ВверхВниз   Решение


Из всякого ли выпуклого четырехугольника можно вырезать параллелограмм, три вершины которого совпадают с тремя вершинами этого четырехугольника?

ВверхВниз   Решение


Прямая отсекает треугольник AKN от правильного шестиугольника ABCDEF так, что  AK + AN = AB.
Найдите сумму углов, под которыми отрезок KN виден из вершин шестиугольника  (∠KAN + ∠KBN + ∠KCN + ∠KDN + ∠KEN + ∠KFN).

ВверхВниз   Решение


Дан квадрат. Найдите геометрическое место середин гипотенуз прямоугольных треугольников, вершины которых лежат на попарно различных сторонах квадрата и не совпадают с его вершинами.

ВверхВниз   Решение


Аудитория имеет форму правильного шестиугольника со стороной 3 м. В каждом углу установлен храпометр, определяющий число спящих студентов на расстоянии, не превышающем 3 м. Сколько всего спящих студентов в аудитории, если сумма показаний храпометров равна 7?

ВверхВниз   Решение


На плоскости нарисованы n > 2 различных векторов  a1, a2, ..., an  с равными длинами. Оказалось, что все векторы  –a1 + a2 + ... + an,
a1a2 + a3 + ... + ana1 + a2 + ... + an–1an   также имеют равные длины. Докажите, что  a1 + a2 + ... + an = 0.

ВверхВниз   Решение


Найдите геометрическое место вершин треугольников с заданными ортоцентром и центром описанной окружности.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 [Всего задач: 20]      



Задача 66789

Темы:   [ Ортоцентр и ортотреугольник ]
[ ГМТ (прочее) ]
Сложность: 4
Классы: 10,11

Дан эллипс $\Gamma$ и его хорда $AB$. Найдите геометрическое место ортоцентров вписанных в $\Gamma$ треугольников $ABC$.
Прислать комментарий     Решение


Задача 78173

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ ГМТ (прочее) ]
Сложность: 4+
Классы: 8,9,10

Дан квадрат со стороной 1. Найти геометрическое место точек, сумма расстояний от которых до сторон этого квадрата или их продолжений равна 4.
Прислать комментарий     Решение


Задача 115781

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ ГМТ (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9,10,11

Найдите геометрическое место вершин треугольников с заданными ортоцентром и центром описанной окружности.

Прислать комментарий     Решение

Задача 67212

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Гомотетия помогает решить задачу ]
[ ГМТ (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

На окружности $\omega$ зафиксирована точка $A$. Хорды $BC$ окружности $\omega$ выбираются так, что проходят через фиксированную точку $P$. Докажите, что окружности 9 точек треугольников $ABC$ касаются фиксированной окружности, не зависящей от выбора $BC$.
Прислать комментарий     Решение


Задача 67193

Темы:   [ Изогональное сопряжение ]
[ Описанные четырехугольники ]
[ ГМТ (прочее) ]
Сложность: 5
Классы: 9,10,11

На плоскости даны две окружности $\omega_{1}$ и $\omega_{2}$, касающиеся внешним образом. На окружности $\omega_{1}$ выбран диаметр $AB$, а на окружности $\omega_{2}$ выбран диаметр $CD$. Рассмотрим всевозможные положения точек $A$, $B$, $C$ и $D$, при которых $ABCD$ — выпуклый описанный четырёхугольник, и пусть $I$ — центр его вписанной окружности. Найдите геометрическое место точек $I$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .