ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Доказать, что  11551958 + 341958n²,  где n – целое.

Вниз   Решение


Автор: Pohoata C.

Через вершины треугольника ABC проводятся три произвольные параллельные прямые da, db, dc. Прямые, симметричные da, db, dc относительно BC, CA, AB соответственно, образуют треугольник XYZ. Найдите геометрическое место центров вписанных окружностей таких треугольников.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 69]      



Задача 115860

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Вписанные и описанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 5-
Классы: 8,9,10,11

Автор: Pohoata C.

Через вершины треугольника ABC проводятся три произвольные параллельные прямые da, db, dc. Прямые, симметричные da, db, dc относительно BC, CA, AB соответственно, образуют треугольник XYZ. Найдите геометрическое место центров вписанных окружностей таких треугольников.

Прислать комментарий     Решение

Задача 108658

Темы:   [ Векторы помогают решить задачу ]
[ Вспомогательная окружность ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 5
Классы: 8,9

Пусть B' — точка описанной окружности остроугольного треугольника ABC , диаметрально противоположная вершине B ; I — центр вписанной окружности треугольника ABC ; M — точка касания вписанной окружности со стороной AC . На сторонах AB и BC выбраны соответственно точки K и L , причём KB=MC и LB=AM . Докажите, что прямые B'I и KL перпендикулярны.
Прислать комментарий     Решение


Задача 111921

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вневписанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 5+
Классы: 8,9,10

Стороны BC и AC треугольника ABC касаются соответствующих вневписанных окружностей в точках A1 , B1 . Пусть A2 , B2 — ортоцентры треугольников CAA1 и CBB1 . Докажите, что прямая A2B2 перпендикулярна биссектрисе угла C .
Прислать комментарий     Решение


Задача 64812

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Проекция на прямую (прочее) ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9,10

Вершины равнобедренного треугольника и центр его описанной окружности лежат на четырёх различных сторонах квадрата.
Найдите углы треугольника.

Прислать комментарий     Решение

Задача 107858

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Подсчет двумя способами ]
[ Ортогональная (прямоугольная) проекция ]
[ Разрезания на параллелограммы ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9,10

Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону.
Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .