ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан четырёхугольник ABCD, противоположные стороны которого пересекаются в точках P и Q. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей ABCD. Решение |
Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 829]
Дан четырёхугольник ABCD, противоположные стороны которого пересекаются в точках P и Q. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей ABCD.
Вписанная в треугольник ABC окружность касается сторон BC, CA, AB в точках A', B', C' соответственно. Перпендикуляр, опущенный из центра I этой окружности на медиану CM, пересекает прямую A'B' в точке K. Докажите, что CK || AB.
а) Вписанная окружность треугольника ABC касается сторон AC и AB в точках B0 и C0 соответственно. Биссектрисы углов B и C треугольника ABC пересекают серединный перпендикуляр к биссектрисе AL в точках Q и P соответственно. Докажите, что прямые PC0 и QB0 пересекаются на прямой BC. б) В треугольнике ABC провели биссектрису AL. Точки O1 и O2 – центры описанных окружностей треугольников ABL и ACL соответственно. Точки B1 и C1 – проекции вершин C и B на биссектрисы углов B и C соответственно. Докажите, что прямые O1C1 и O2B1 пересекаются на прямой BC. в) Докажите, что точки, полученные в пп. а) и б), совпадают.
Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 829] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|