ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть I – центр вписанной окружности прямоугольного треугольника ABC, касающейся катетов AC и BC в точках B0 и A0 соответственно. Перпендикуляр, опущенный из A0 на прямую AI, и перпендикуляр, опущенный из B0 на прямую BI, пересекаются в точке P. Докажите, что прямые CP и AB перпендикулярны.

   Решение

Задачи

Страница: << 175 176 177 178 179 180 181 >> [Всего задач: 1275]      



Задача 115351

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

Четырёхугольник ABCD вписан в окружность с диаметром AC. Точки K и M – проекции вершин A и C соответственно на прямую BD. Через точку K проведена прямая, параллельная BC и пересекающая AC в точке P. Докажите, что угол KPM – прямой.

Прислать комментарий     Решение

Задача 115883

Темы:   [ Пересекающиеся окружности ]
[ Три точки, лежащие на одной прямой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9,10,11

Две окружности пересекаются в точках P и Q. Из точки Q пустили в каждую из окружностей по одному лучу, которые отражаются от окружностей по закону "угол падения равен углу отражения". Точки касания траектории первого луча – A1, A2, ..., второго – B1, B2, ... . Оказалось, что точки A1, B1 и P лежат на одной прямой. Докажите, что тогда все прямые AiBi проходят через точку P.
Прислать комментарий     Решение


Задача 115918

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Окружность, вписанная в угол ]
Сложность: 4-
Классы: 8,9

Окружность, вписанная в угол с вершиной O, касается его сторон в точках A и B. Луч OX пересекает эту окружность в точках C и D, причём
OC = CD = 1.  Если M – точка пересечения луча OX и отрезка AB, то чему равна длина отрезка OM?

Прислать комментарий     Решение

Задача 115977

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9

Пусть I – центр вписанной окружности прямоугольного треугольника ABC, касающейся катетов AC и BC в точках B0 и A0 соответственно. Перпендикуляр, опущенный из A0 на прямую AI, и перпендикуляр, опущенный из B0 на прямую BI, пересекаются в точке P. Докажите, что прямые CP и AB перпендикулярны.

Прислать комментарий     Решение

Задача 116455

Темы:   [ Правильный (равносторонний) треугольник ]
[ Поворот помогает решить задачу ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанные четырехугольники (прочее) ]
[ Векторы помогают решить задачу ]
[ Теоремы Чевы и Менелая ]
Сложность: 4-
Классы: 8,9,10

Автор: Фольклор

На сторонах АС и ВС равностороннего треугольника АВС отмечены точки D и Е соответственно так, что  AD = ⅓ AC,  CE = ⅓ CE.  Отрезки АЕ и BD пересекаются в точке F. Найдите угол BFC.

Прислать комментарий     Решение

Страница: << 175 176 177 178 179 180 181 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .