ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какое наибольшее количество точек самопересечения может иметь замкнутая ломаная, в которой 7 звеньев?

   Решение

Задачи

Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 829]      



Задача 116146

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Примеры и контрпримеры. Конструкции ]
[ Ломаные ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 7,8,9

Какое наибольшее количество точек самопересечения может иметь замкнутая ломаная, в которой 7 звеньев?

Прислать комментарий     Решение

Задача 116167

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Признаки и свойства параллелограмма ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Дан равнобедренный прямоугольный треугольник ABC. Hа продолжениях катетов AB и AC за вершины B и C отложили равные отрезки BK и CL. E и F – точки пересечения отрезка KL и прямых, перпендикулярных KC и проходящих через точки B и A соответственно. БикЮ Докажите, что  EF = FL.

Прислать комментарий     Решение

Задача 116196

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

Диагонали вписанного четырехугольника ABCD пересекаются в точке K.
Докажите, что касательная в точке K к описанной окружности треугольника ABK, параллельна CD.

Прислать комментарий     Решение

Задача 116228

Темы:   [ Неравенство треугольника (прочее) ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 9,10,11

В равнобедренном треугольнике ABC на основании BC взята точка D, а на боковой стороне AB – точки E и M так, что  AM = ME  и отрезок DM параллелен стороне AC. Докажите, что  AD + DE > AB + BE.

Прислать комментарий     Решение

Задача 116338

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки подобия ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Центр масс ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9,10

На сторонах AB и BC треугольника ABC расположены точки M и N соответственно, причём  AM : MB = 3 : 5,  BN : NC = 1 : 4.  Прямые CM и AN пересекаются в точке O. Найдите отношения  OA : ON  и  OM : OC.

Прислать комментарий     Решение

Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .