Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

30 тремя одинаковыми цифрами. Число 30 запишите в виде четырех различных выражений, из трех одинаковых цифр каждое. Цифры могут быть соединены знаками действий.

Вниз   Решение


Среди комплексных чисел p , удовлетворяющих условию  |p – 25i| ≤ 15,  найти число с наименьшим аргументом.

ВверхВниз   Решение


В остроугольном треугольнике отметили отличные от вершин точки пересечения описанной окружности с высотами, проведенными из двух вершин, и биссектрисой, проведенной из третьей вершины, после чего сам треугольник стерли. Восстановите его.


ВверхВниз   Решение


Автор: Храбров А.

По данному натуральному числу a0 строится последовательность {an} следующим образом     если an нечётно, и a0/2, если an чётно. Докажите, что при любом нечётном  a0 > 5  в последовательности {an} встретятся сколь угодно большие числа.

ВверхВниз   Решение


Мальвина велела Буратино умножить число на 4 и к результату прибавить 15, а Буратино умножил число на 15 и потом прибавил 4, однако, ответ получился верный. Какое это было число?

ВверхВниз   Решение


Дано трёхзначное число, у которого первая и последняя цифра одинаковые.
Доказать, что число делится на 7 тогда и только тогда, когда делится на 7 сумма второй и третьей цифр.

ВверхВниз   Решение


Используя пять двоек, арифметические действия и возведение в степень, составьте числа от 11 до 20.

ВверхВниз   Решение


Пусть M={x1, .., x30} – множество, состоящее из 30 различных положительных чисел; An ( 1 n 30 ) – сумма всевозможных произведений различных n элементов множества M . Докажите, что если A15>A10 , то A1>1 .

ВверхВниз   Решение


Сравните числа:  А = 2011·20122012·201320132013  и  В = 2013·20112011·201220122012.

ВверхВниз   Решение


Автобусный билет будем считать счастливым, если между его цифрами можно в нужных местах расставить знаки четырёх арифметических действий и скобки так, чтобы значение полученного выражения равнялось 100. Является ли счастливым билет N123456?

ВверхВниз   Решение


У двух треугольников равны наибольшие стороны и равны наименьшие углы. Строится новый треугольник со сторонами, равными суммам соответствующих сторон данных треугольников (складываются наибольшие стороны двух треугольников, средние по длине стороны и наименьшие стороны). Докажите, что площадь нового треугольника не меньше удвоенной суммы площадей исходных.

ВверхВниз   Решение


Сфера вписана в четырёхугольную пирамиду SABCD , основанием которой является трапеция ABCD , а также вписана в правильный тетраэдр, одна из граней которого совпадает с боковой гранью пирамиды SABCD . Найдите радиус сферы, если объём пирамиды SABCD равен 64.

ВверхВниз   Решение


В пирамиде ABCD плоские углы DAB , ABC , BCD – прямые. Вершины M , N , P , Q правильного тетраэдра расположены соответственно на рёбрах AC , BC , AB , BD пирамиды ABCD . Ребро MN параллельно ребру AB . Найдите отношение объёмов правильного тетраэдра MNPQ и пирамиды ABCD

ВверхВниз   Решение


Автор: Фольклор

Оля и Максим оплатили путешествие по архипелагу из 2009 островов, где некоторые острова связаны двусторонними маршрутами катера. Они путешествуют, играя. Сначала Оля выбирает остров, на который они прилетают. Затем они путешествуют вместе на катерах, по очереди выбирая остров, на котором еще не были (первый раз выбирает Максим). Кто не сможет выбрать остров, проиграл. Докажите, что Оля может выиграть.

ВверхВниз   Решение


Длины трёх сторон четырёхугольника, вписанного в окружность радиуса 2, Одинаковы и равны $ \sqrt{2}$. Найдите диагонали четырёхугольника.

ВверхВниз   Решение


В пирамиде MNPQ плоские углы QMN , MNP , NPQ – прямые. Вершины A , B , C , D правильного тетраэдра расположены соответственно на рёбрах MP , NP , NQ , PQ пирамиды MNPQ . Ребро AB параллельно ребру MN . Найдите отношение объёмов правильного тетраэдра ABCD и пирамиды MNPQ

ВверхВниз   Решение


Автор: Фольклор

Пусть I – центр окружности, вписанной в треугольник ABC. Oкружность, описанная около треугольника BIC, пересекает прямые AB и AC в точках E и F соответственно. Докажите, что прямая EF касается окружности, вписанной в треугольник ABC.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 501]      



Задача 116169

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Пусть I – центр окружности, вписанной в треугольник ABC. Oкружность, описанная около треугольника BIC, пересекает прямые AB и AC в точках E и F соответственно. Докажите, что прямая EF касается окружности, вписанной в треугольник ABC.

Прислать комментарий     Решение

Задача 66814

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Четыре точки, лежащие на одной окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 9,10,11

В остроугольном треугольнике $ABC$ ($AC>AB$ ) провели биссектрису $AK$ и медиану $AT$, последнюю продлили до пересечения с описанной окружностью треугольника в точке $D$. Точка $F$ симметрична $K$ относительно $T$. Даны углы треугольника $ABC$, найдите угол $FDA$.
Прислать комментарий     Решение


Задача 67100

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10,11

Прямая $\ell$, параллельная стороне $BC$ треугольника $ABC$, касается его вписанной окружности и пересекает его описанную окружность в точках $D$ и $E$. Пусть $I$ – центр вписанной окружности треугольника $ABC$. Докажите, что $AI^2 = AD\cdot AE$.
Прислать комментарий     Решение


Задача 52372

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 3+
Классы: 8,9

Продолжения высот остроугольного треугольника ABC пересекают описанную окружность в точках A1, B1 и C1 соответственно. Докажите, что биссектрисы треугольника A1B1C1 лежат на прямых AA1, BB1, CC1.

Прислать комментарий     Решение


Задача 53057

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Четыре точки окружности следуют в порядке: A, B, C, D. Продолжение хорды AB за точку B и хорды CD за точку C пересекаются в точке E, причём угол AED равен 60o. Угол ABD в три раза больше угла BAC. Докажите, что AD — диаметр окружности.

Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .