ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Сколько раз функция f(x) = cos x cos x/2 cos x/3 ... cos x/2009 меняет знак на отрезке [0, 2009π/2] ? Диагональ прямоугольного параллелепипеда образует с его рёбрами углы α , β и γ . Докажите, что cos2α + cos2β + cos2γ = 1 . Окружность с центром I , вписанная в грань ABC треугольной пирамиды SABC , касается отрезков AB , BC , CA в точках D , E , F соответственно. На отрезках SA , SB , SC отмечены соответственно точки A' , B' , C' так, что AA'=AD , BB'=BE , CC'=CF ; S' – точка на описанной сфере пирамиды, диаметрально противоположная точке S . Известно, что SI является высотой пирамиды. Докажите, что точка S' равноудалена от точек A' , B' , C' .
Составьте уравнение окружности, проходящей через точки A(- 2;1), B(9;3) и C(1;7).
Даны точки A(0;0), B(4;0) и C(0;6). Составьте уравнение окружности, описанной около треугольника ABC.
Постройте треугольник по двум сторонам и медиане, проведённой к третьей стороне. Все попарные расстояния между четырьмя точками в пространстве равны 1. Найдите расстояние от одной из этих точек до плоскости, определяемой тремя другими. Докажите неравенство sinn2x + (sinnx – cosnx)² ≤ 1. B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника, отсекает от него равносторонний треугольник. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 70]
B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника, отсекает от него равносторонний треугольник.
Докажите, что основания высот, середины сторон и середины отрезков от ортоцентра до вершин треугольника лежат на одной окружности.
Докажите, что в любом треугольнике точка H пересечения высот (ортоцентр), центр O описанной окружности и точка M пересечения медиан (центр тяжести) лежат на одной прямой, причём точка M расположена между точками O и H, и MH = 2MO.
Какие стороны пересекает прямая Эйлера в остроугольном
и тупоугольном треугольниках?
а) Докажите, что описанная окружность
треугольника ABC является окружностью девяти точек для треугольника,
образованного центрами вневписанных окружностей треугольника ABC.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 70]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке