ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Целые числа m и n таковы, что сумма     целая. Верно ли, что оба слагаемых целые?

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 93]      



Задача 116373

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Рациональные и иррациональные числа ]
Сложность: 4-
Классы: 9,10,11

Целые числа m и n таковы, что сумма     целая. Верно ли, что оба слагаемых целые?

Прислать комментарий     Решение

Задача 60847

Темы:   [ Теория алгоритмов (прочее) ]
[ Периодические и непериодические дроби ]
[ Рациональные и иррациональные числа ]
[ Периодичность и непериодичность ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Коля Васин задумал написать программу, которая дала бы возможность компьютеру печатать одну за другой цифры десятичной записи числа . Докажите, что даже если бы машина не ломалась, то Колина затея все равно бы не удалась, и рано или поздно компьютер напечатал бы неверную цифру.

Прислать комментарий     Решение

Задача 60867

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Правильный (равносторонний) треугольник ]
[ Рациональные и иррациональные числа ]
Сложность: 4
Классы: 9,10,11

Можно ли нарисовать правильный треугольник с вершинами в узлах квадратной сетки?

Прислать комментарий     Решение

Задача 73737

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
[ Рациональные и иррациональные числа ]
[ Разложение на множители ]
Сложность: 4
Классы: 9,10,11

Из последовательности  a,  a + d,  a + 2d,  a + 3d, ...,  являющейся бесконечной арифметической прогрессией, где d не равно 0, тогда и только тогда можно выбрать подпоследовательность, являющуюся бесконечной геометрической прогрессией, когда отношение a/d  рационально. Докажите это.

Прислать комментарий     Решение

Задача 98215

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Рациональные и иррациональные числа ]
[ Обыкновенные дроби ]
[ Обратный ход ]
[ Уравнения с модулями ]
Сложность: 4
Классы: 7,8,9

Бесконечная последовательность чисел xn определяется условиями:  xn+1 = 1 – |1 – 2xn|,  причём  0 ≤ x1 ≤ 1.
  а) Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, когда x1 рационально.
  б) Сколько существует значений x1, для которых эта последовательность – периодическая с периодом T (для каждого T = 2, 3, ...)?

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 93]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .