ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Восстановите треугольник с помощью циркуля и линейки по точке пересечения высот и основаниям медианы и биссектрисы, проведённых к одной из сторон.

   Решение

Задачи

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 563]      



Задача 115413

Темы:   [ Биссектриса делит дугу пополам ]
[ Диаметр, основные свойства ]
[ Свойства симметрий и осей симметрии ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательная окружность ]
Сложность: 4+
Классы: 8,9

В треугольнике  ABC проведена биссектриса  BD (точка  D лежит на отрезке  AC ). Прямая  BD пересекает окружность  Ω , описанную около треугольника  ABC , в точках  B и  E . Окружность  ω , построенная на отрезке  DE как на диаметре, пересекает окружность  Ω в точках  E и  F . Докажите, что прямая, симметричная прямой  BF относительно прямой  BD , содержит медиану треугольника  ABC .
Прислать комментарий     Решение


Задача 116748

Темы:   [ Построение треугольников по различным точкам ]
[ Ортоцентр и ортотреугольник ]
[ Симметрия помогает решить задачу ]
[ Окружность Аполлония ]
Сложность: 4+
Классы: 8,9

Восстановите треугольник с помощью циркуля и линейки по точке пересечения высот и основаниям медианы и биссектрисы, проведённых к одной из сторон.

Прислать комментарий     Решение

Задача 55606

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Признаки и свойства параллелограмма ]
[ Осевая и скользящая симметрии ]
[ Вписанный угол равен половине центрального ]
Сложность: 4+
Классы: 8,9

На плоскости дан треугольник ABC и точка M. Известно, что точки, симметричные точке M относительно двух сторон треугольника ABC попадают на окружность, описанную около треугольника ABC. Докажите, что точка, симметричная точке M относительно третьей стороны, также попадает на эту окружность.

Прислать комментарий     Решение


Задача 65021

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства симметрий и осей симметрии ]
[ Проективная геометрия (прочее) ]
[ Изогональное сопряжение ]
Сложность: 5-
Классы: 9,10,11

Автор: Ивлев Ф.

Вписанная окружность остроугольного треугольника ABC касается его сторон AB, BC, CA в точках C1, A1, B1 соответственно. Пусть A2, B2 – середины отрезков B1C1, A1C1 соответственно, O – центр описанной окружности треугольника ABC, P – одна из точек пересечения прямой CO с вписанной окружностью. Прямые PA2 и PB2 вторично пересекают вписанную окружность в точках A' и B'. Докажите, что прямые AA' и BB' пересекаются на высоте треугольника, опущенной на AB.

Прислать комментарий     Решение

Задача 66219

Темы:   [ Вписанные и описанные окружности ]
[ Подерный (педальный) треугольник ]
[ Симметрия помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Автор: Рябов П.

Касательные к описанной окружности треугольника ABC в точках A и B пересекаются в точке D. Окружность, проходящая через проекции D на прямые BC, CA, AB, повторно пересекает AB в точке C'. Аналогично строятся точки A', B'. Докажите, что прямые AA', BB', CC' пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .