ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны многочлен P(x) и такие числа  a1, a2, a3, b1, b2, b3,  что  a1a2a3 ≠ 0.  Оказалось, что  P(a1x + b1) + P(a2x + b2) = P(a3x + b3)  для любого действительного x. Докажите, что P(x) имеет хотя бы один действительный корень.

   Решение

Задачи

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 416]      



Задача 97903

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4-
Классы: 10,11

Функция F задана на всей вещественной оси, причём для любого x имеет место равенство:  F(x + 1)F(x) + F(x + 1) + 1 = 0.
Докажите, что функция F не может быть непрерывной.

Прислать комментарий     Решение

Задача 107793

Темы:   [ Аддитивность интеграла ]
[ Линейность интеграла ]
[ Перенос помогает решить задачу ]
[ Многочлены (прочее) ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 10,11

Разрезать отрезок  [–1, 1]  на чёрные и белые отрезки так, чтобы интегралы от любой  а) линейной функции;  б) квадратного трёхчлена по белым и чёрным отрезкам были равны.

Прислать комментарий     Решение

Задача 109041

Темы:   [ Исследование квадратного трехчлена ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4-
Классы: 8,9,10

x1 – вещественный корень уравнения  x² + ax + b = 0,  x2 – вещественный корень уравнения  x² – ax – b = 0.
Доказать, что уравнение  x² + 2ax + 2b = 0  имеет вещественный корень, заключённый между x1 и x2.  (a и b – вещественные числа).

Прислать комментарий     Решение

Задача 111815

Темы:   [ Исследование квадратного трехчлена ]
[ Характеристические свойства и рекуррентные соотношения ]
[ Методы решения задач с параметром ]
Сложность: 4-
Классы: 8,9,10

Дан квадратный трёхчлен  f(x) = x² + ax + b.  Известно, что для любого вещественного x существует такое вещественное y, что   f(y) = f(x) + y.  Найдите наибольшее возможное значение a.

Прислать комментарий     Решение

Задача 116775

Темы:   [ Многочлен нечетной степени имеет действительный корень ]
[ Функции. Непрерывность (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Даны многочлен P(x) и такие числа  a1, a2, a3, b1, b2, b3,  что  a1a2a3 ≠ 0.  Оказалось, что  P(a1x + b1) + P(a2x + b2) = P(a3x + b3)  для любого действительного x. Докажите, что P(x) имеет хотя бы один действительный корень.

Прислать комментарий     Решение

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .