ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Выпуклый четырёхугольник ABCD таков, что AB·CD = AD·BC. Докажите, что –∠BAC + ∠CBD + ∠DCA + ∠ADB = 180°.
На плоскости даны оси координат с одинаковым, но не
обозначенным масштабом и график функции
Как с помощью циркуля и линейки построить касательную к этому графику в заданной его точке, если: а) α Через точку I пересечения биссектрис треугольника ABC проведена прямая, пересекающая стороны AB и BC в точках M и N
соответственно. Треугольник BMN оказался остроугольным. На стороне AC выбраны точки K и L так, что ∠ILA = ∠IMB, ∠IKC = ∠INB. Докажите, что Пусть O – центр описанной окружности треугольника ABC. На сторонах AB и BC выбраны точки M и N соответственно, причём 2∠MON = ∠AOC. Докажите, что периметр треугольника MBN не меньше стороны AC. Дан тетраэдр ABCD. Вписанная в него сфера σ касается грани ABC в точке T. Сфера σ' касается грани ABC в точке T' и продолжений граней ABD, BCD, CAD. Докажите, что прямые AT и AT' симметричны относительно биссектрисы угла BAC.
Дана точка M(x;y). Найдите координаты точки, симметричной точке M относительно: а) оси OX; б) оси OY.
В окружности с центром O проведены две параллельные хорды AB и CD. Окружности с диаметрами AB и CD пересекаются в точке P. Дан параллелограмм ABCD, в котором AB = a, AD = b. Первая окружность имеет центр в вершине A и проходит через D, вторая имеет центр в C и проходит через D. Произвольная окружность с центром B пересекает первую окружность в точках M1, N1, а вторую – в точках M2, N2. Чему равно отношение M1N1 : M2N2? Пусть a, b, c – длины сторон произвольного треугольника; p – полупериметр; r – радиус вписанной окружности. Докажите неравенство В треугольник ABC вписана окружность, касающаяся сторон AB, AC и BC в точках C1, B1 и A1 соответственно. Пусть K – точка на окружности, диаметрально противоположная точке C1, D – точка пересечения прямых B1C1 и A1K. Докажите, что CD = CB1. На основании BC треугольника ABC найти точку M так, чтобы окружности, вписанные в треугольники ABM и AMC взаимно касались. Медиана DM треугольника DEF равна половине стороны EF. Один из углов, образованных при пересечении стороны EF биссектрисой
DL, равен 55°. Пусть x1≤⋯≤xn. Докажите неравенство (n∑i,j=1|xi−xj|)2≤2(n2−1)3n∑i,j=1(xi−xj)2. Докажите, что оно обращается в равенство только если числа x1,…,xn образуют арифметическую прогрессию. В окружности с центром O проведены три равные хорды AB, CD и PQ (см. рисунок). Докажите, что MOK равен половине угла BLD. По кругу расставлены цифры 1, 2, 3,..., 9 в произвольном порядке. Каждые три цифры, стоящие подряд по часовой стрелке, образуют трёхзначное число. Найдите сумму всех девяти таких чисел. Зависит ли она от порядка, в котором записаны цифры?
Из четырёх цифр, отличных от нуля, составлены два четырёхзначных числа: самое большое и самое маленькое из возможных. Сумма получившихся чисел оказалась равна 11990. Какие числа могли быть составлены? В параллелограмме ABCD диагональ АС в два раза больше стороны АВ. На стороне BC выбрана точка K так, что ∠KDB = ∠BDA. |
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 604]
На сторонах АВ, ВС и СА треугольника АВС отмечены точки С1, А1 и В1 соответственно так, что ВС1 = С1А1 = А1В1 = В1С.
В трапеции ABCD стороны AD и BC параллельны, и AB = BC = BD. Высота BK пересекает диагональ AC в точке M. Найдите ∠CDM.
В параллелограмме ABCD диагональ АС в два раза больше стороны АВ. На стороне BC выбрана точка K так, что ∠KDB = ∠BDA.
В треугольнике ABC на стороне AB выбрана точка K и проведены биссектриса KE треугольника AKC и высота KH треугольника BKC. Оказалось, что угол EKH – прямой. Найдите BC, если HC = 5.
На боковой стороне BC равнобедренного треугольника ABC как
на диаметре построена окружность, пересекающая основание этого треугольника в точке D. Найдите расстояние от вершины A до центра окружности, если AD =
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 604]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке