Страница:
<< 1 2 3 4 5 6 7 >> [Всего задач: 38]
Докажите, что из n предметов чётное число предметов можно выбрать 2n–1 способами.
Докажите, что
[Маршруты ладьи]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Рассмотрим шахматную доску n×n. Требуется провести ладью из левого нижнего угла в правый верхний. Двигаться можно только вверх и вправо, не заходя при этом на клетки главной диагонали и ниже нее. (Ладья оказывается на главной диагонали только в начальный и в конечный моменты времени.) Сколько у ладьи существует таких маршрутов?
[Очередь в кассу]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Билеты стоят 50 центов, и 2n покупателей стоят в очереди в кассу. Половина из них имеет по одному доллару, остальные – по 50 центов. Кассир начинает продажу билетов, не имея денег. Сколько существует различных порядков в очереди, таких, что кассир всегда может дать сдачу?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Обозначим через Pk,l(n) количество разбиений числа n на не более чем k слагаемых, каждое из которых не превосходит l.
Докажите равенства:
а) Pk,l(n) – Pk,l–1(n) = Pk–1,l(n – l);
б) Pk,l(n) – Pk–1,l(n) = Pk,l–1(n – k);
в) Pk,l(n) = Pl,k(n);
г) Pk,l(n) = Pk,l(kl – n).
Страница:
<< 1 2 3 4 5 6 7 >> [Всего задач: 38]