Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

Чемпионат России по шахматам проводится в один круг. Сколько играется партий, если участвуют 18 шахматистов?

Вниз   Решение


Сколькими способами можно выбрать из 15 различных слов набор, состоящий не более чем из пяти слов?

ВверхВниз   Решение


Найдите производящие функции последовательности многочленов Фибоначчи  F(x, z) = F0(x) + F1(x)z + F2(x)z² + ... + Fn(x)zn + ...
и последовательности многочленов Люка   L(x, z) = L0(x) + L1(x)z + L2(x)z² + ... + Ln(x)zn + ...
Определения многочленов Фибоначчи и Люка можно найти в справочнике.

ВверхВниз   Решение


Докажите, что у многочлена 2Tn(x/2) старший коэффициент равен единице, а все остальные коэффициенты – целые числа.
Здесь Tn – многочлен Чебышёва, смотри задачу 61099.

ВверхВниз   Решение


Вычислите несколько первых многочленов Фибоначчи и Люка (определения многочленов Фибоначчи и Люка смотри здесь). Какие значения эти многочлены принимают при x = 1? Докажите, что многочлены Люка связаны с многочлены Фибоначчи соотношениями:
  а)  Ln(x) = Fn–1(x) + Fn+1(x)  (n ≥ 1);
  б)  Fn(x)(x² + 4) = Ln–1(x) + Ln+1(x)  (n ≥ 1);
  в)  F2n(x) = Ln(x)Fn(x)  (n ≥ 0);
  г)  (Ln(x))² + (Ln+1(x))² = (x² + 4)F2n+1(x)  (n ≥ 0);
  д)  Fn+2(x) + Fn–2(x) = (x² + 2)Fn(x).

ВверхВниз   Решение


Найти все такие натуральные числа p, что p и  5p + 1  – простые.

ВверхВниз   Решение


Получите формулу для многочленов Фибоначчи и Люка, аналогичную формуле Бине (см. задачи 60578 и 60587).
Определения многочленов Фибоначчи и Люка смотри здесь.

ВверхВниз   Решение


Сколькими способами можно составить расписание первого тура чемпионата России по футболу, в котором играет 16 команд? (Является важным, кто хозяин поля.)

ВверхВниз   Решение


а) Сколькими способами 28 учеников могут выстроиться в очередь в столовую?
б) Как изменится это число, если Петю Иванова и Колю Васина нельзя ставить друг за другом?

ВверхВниз   Решение


а) Из класса, в котором учатся 30 человек, нужно выбрать двоих школьников для участия в математической олимпиаде. Сколькими способами это можно сделать?
б) Сколькими способами можно выбрать команду из трех школьников в том же классе?

ВверхВниз   Решение


Разложите функции     и     (n ≥ 1)  в цепные дроби.
Определения многочленов Фибоначчи Fn(x) и Люка Ln(x) смотри, например, здесь.

ВверхВниз   Решение


Сколько существует трёхзначных чисел, в записи которых цифры 1, 2, 3 встречаются ровно по одному разу?

ВверхВниз   Решение


а) Сколькими способами можно разбить 15 человек на три команды по пять человек в каждой?
б) Сколькими способами можно выбрать из 15 человек две команды по пять человек в каждой?

ВверхВниз   Решение


На кубе отмечены вершины и центры граней, а также проведены диагонали всех граней. Можно ли по отрезкам этих диагоналей обойти все отмеченные точки, побывав в каждой из них ровно по одному разу?

ВверхВниз   Решение


В центре куба сидит жук. Доказать, что он, переползая через ребра, не сможет обойти все кубики по одному разу.

ВверхВниз   Решение


а) Сумма длин рёбер любого выпуклого многогранника больше утроенного диаметра. Докажите это. (Диаметром многогранника называют наибольшую из длин всевозможных отрезков с концами в вершинах многогранника.)

б) Для любых двух вершин A и B любого выпуклого многогранника существуют три ломаные, каждая из которых идёт по рёбрам многогранника из А в В и никакие две не проходят по одному ребру. Докажите это.

в) Если в выпуклом многограннике разрезать два ребра, то для любых двух его вершин А и В существует соединяющая эти две вершины ломаная, идущая по оставшимся рёбрам. Докажите это.

г) Докажите, что в задаче б) можно выбрать три ломаные, никакие две из которых не имеют общих вершин, за исключением точек А и В.

ВверхВниз   Решение


У куба отмечены вершины и центры граней, а также проведены диагонали всех граней.
Можно ли по отрезкам этих диагоналей обойти все отмеченные точки, побывав в каждой из них ровно один раз?

ВверхВниз   Решение


Докажите, что площадь S треугольника равна abc/4R.

ВверхВниз   Решение


В компании из k человек (k > 3) у каждого появилась новость, известная ему одному. За один телефонный разговор двое сообщают друг другу все известные им новости. Докажите, что за 2k – 4 разговора все они могут узнать все новости.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 316]      



Задача 32062

Темы:   [ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2
Классы: 7,8,9

В компании из k человек (k > 3) у каждого появилась новость, известная ему одному. За один телефонный разговор двое сообщают друг другу все известные им новости. Докажите, что за 2k – 4 разговора все они могут узнать все новости.

Прислать комментарий     Решение


Задача 109470

Темы:   [ Процессы и операции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 5,6,7,8

На столе лежат в ряд пять монет: средняя – орлом вверх, а остальные – решкой вверх. За одну операцию разрешается одновременно перевернуть ровно три монеты, лежащие рядом. Можно ли, выполнив такую операцию несколько раз, добиться того, чтобы все пять монет лежали орлом вверх?
Прислать комментарий     Решение


Задача 34882

Тема:   [ Процессы и операции ]
Сложность: 2+

По окружности, сделанной из проволоки, двигаются бусинки с одинаковой угловой скоростью, некоторые - по часовой стрелке, некоторые - против. При столкновении две бусинки разлетаются в разные стороны с прежними скоростями. Докажите, что в некоторый момент начальное расположение бусинок повторится.
Прислать комментарий     Решение


Задача 102809

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 7,8

На доске написано число 12. В течение каждой минуты число либо умножают, либо делят либо на 2, либо на 3, и результат записывают на доску вместо исходного числа. Докажите, что число, которое будет написано на доске ровно через час, не будет равно 54.

Прислать комментарий     Решение

Задача 105098

Тема:   [ Процессы и операции ]
Сложность: 3-
Классы: 6,7,8

Даны шесть слов:
   ЗАНОЗА
   ЗИПУНЫ
   КАЗИНО
   КЕФАЛЬ
   ОТМЕЛЬ
   ШЕЛЕСТ
За один шаг можно заменить любую букву в любом из этих слов на любую другую (например, за один шаг можно получить из слова ЗАНОЗА слово ЗКНОЗА. Какое наименьшее число шагов нужно, чтобы сделать все слова одинаковыми (допускаются бессмысленные)?

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 316]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .