ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Восстановите  а) треугольник;  б) пятиугольник по серединам его сторон.

   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 239]      



Задача 67093

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вспомогательные подобные треугольники ]
[ Вспомогательные проекции ]
Сложность: 3+
Классы: 8,9,10

На сторонах $AB$, $BC$, $CA$ треугольника $ABC$ выбраны точки $P$, $Q$, $R$ соответственно так, что $AP=PR$, $CQ=QR$. Точка $H$ – ортоцентр треугольника $PQR$, точка $O$ – центр описанной окружности треугольника $ABC$. Докажите, что $OH \parallel AC$.
Прислать комментарий     Решение


Задача 79354

Темы:   [ Свойства суммы, разности векторов и произведения вектора на число ]
[ Принцип крайнего (прочее) ]
[ Вспомогательные проекции ]
Сложность: 3+
Классы: 10

Существует ли на плоскости конечный набор различных векторов $ \overrightarrow{a_1}$, $ \overrightarrow{a_2}$, ..., $ \overrightarrow{a_n}$ такой, что для любой пары различных векторов из этого набора найдётся такая другая пара из этого набора, что суммы каждой из пар равны между собой?
Прислать комментарий     Решение


Задача 78490

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Векторы помогают решить задачу ]
[ Вспомогательные проекции ]
Сложность: 4-
Классы: 7,8

Дан произвольный треугольник ABC и такая прямая l, пересекающая треугольник, что расстояние от неё до точки A равно сумме расстояний до этой прямой от точек B и C (причем B и C лежат по одну сторону от l). Доказать, что все такие прямые проходят через одну точку.
Прислать комментарий     Решение


Задача 32109

Темы:   [ Построение треугольников по различным точкам ]
[ Средняя линия треугольника ]
[ Векторы помогают решить задачу ]
[ Пятиугольники ]
Сложность: 4-
Классы: 8,9,10

Восстановите  а) треугольник;  б) пятиугольник по серединам его сторон.

Прислать комментарий     Решение

Задача 61163

Темы:   [ Геометрические интерпретации в алгебре ]
[ Тождественные преобразования (тригонометрия) ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 9,10,11

Докажите равенства:
  a)  cos π/5 – cos /5 = ½;
  б)  cosec π/7 = cosec /7 + cosec /7;
  в)  sin 9° + sin 49° + sin 89° + ... + sin 329° = 0.

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .