ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На книжной полке стоят 30 томов энциклопедии в некотором порядке. За одну операцию разрешается менять местами любые два соседних тома. За какое наименьшее число операций можно гарантированно выстроить все тома в правильном порядке (с первого по тридцатый слева направо) независимо от начального положения?

   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 1006]      



Задача 35024

Темы:   [ Перестановки и подстановки ]
[ Процессы и операции ]
[ Инварианты и полуинварианты ]
Сложность: 4
Классы: 8,9,10

На книжной полке стоят 30 томов энциклопедии в некотором порядке. За одну операцию разрешается менять местами любые два соседних тома. За какое наименьшее число операций можно гарантированно выстроить все тома в правильном порядке (с первого по тридцатый слева направо) независимо от начального положения?

Прислать комментарий     Решение

Задача 35108

Тема:   [ Теория графов (прочее) ]
Сложность: 4
Классы: 10,11

На плоскости отмечено 100 точек, никакие три из которых не лежат на одной прямой. Некоторые пары точек соединены отрезками. Известно, что никакая тройка отрезков не образует треугольника. Какое наибольшее число отрезков могло быть проведено?

Прислать комментарий     Решение

Задача 35163

Темы:   [ Теория графов (прочее) ]
[ Процессы и операции ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 8,9,10

В парламенте 200 депутатов. В процессе заседания произошло 200 потасовок, в каждой из которой участвовали некоторые два депутата.
Докажите, что можно объединить в комиссию 67 депутатов, из которых никакие два не выясняли между собой отношения в потасовке.

Прислать комментарий     Решение

Задача 35222

Темы:   [ Степень вершины ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

На плоскости нарисовано несколько точек, некоторые пары точек соединены отрезками. Известно, что из каждой точки выходит не более k отрезков. Докажите, что точки можно покрасить в  k + 1  цвет таким образом, чтобы каждые две точки, соединенные отрезком, были покрашены в разные цвета.

Прислать комментарий     Решение

Задача 35395

Темы:   [ Комбинаторика (прочее) ]
[ Таблицы и турниры (прочее) ]
[ Доказательство от противного ]
Сложность: 4
Классы: 10,11

На доске n×n расставлено  n – 1  фишек так, что никакие две из них не стоят на соседних (по стороне) клетках.
Докажите, что одну из них можно передвинуть на соседнюю клетку так, чтобы снова никакие две фишки не стояли на соседних клетках.

Прислать комментарий     Решение

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 1006]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .