ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны две концентрические окружности. Хорда большей из них касается меньшей и имеет длину 2.
Найдите площадь кольца, заключенного между окружностями.

   Решение

Задачи

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 401]      



Задача 55455

Темы:   [ Окружности (построения) ]
[ Касающиеся окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Инверсия помогает решить задачу ]
[ Построение окружностей ]
Сложность: 5
Классы: 8,9

Даны две точки A и B и окружность S . С помощью циркуля и линейки постройте окружность, проходящую через точки A и B и касающуюся окружности S .
Прислать комментарий     Решение


Задача 57059

Темы:   [ Пятиугольники ]
[ Центральная симметрия помогает решить задачу ]
[ Диаметр, основные свойства ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 5
Классы: 8,9,10

Правильный пятиугольник ABCDE со стороной a вписан в окружность S. Прямые, проходящие через его вершины перпендикулярно сторонам, образуют правильный пятиугольник со стороной b (см. рис.). Сторона правильного пятиугольника, описанного около окружности S, равна c. Докажите, что  a2 + b2 = c2.


Прислать комментарий     Решение

Задача 67185

Темы:   [ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 8,9,10

Периметр треугольника $ABC$ равен 1. Окружность $\omega$ касается стороны $BC$, продолжения стороны $AB$ в точке $P$ и продолжения стороны $AC$ в точке $Q$. Прямая, проходящая через середины $AB$ и $AC$, пересекает описанную окружность треугольника $APQ$ в точках $X$ и $Y$. Найдите длину отрезка $XY$.
Прислать комментарий     Решение


Задача 52454

Темы:   [ Вспомогательная окружность ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5+
Классы: 8,9

Противоположные стороны четырёхугольника, вписанного в окружность, пересекаются в точках P и Q. Найдите PQ, если касательные к окружности, проведённые из точек P и Q, равны a и b.

Прислать комментарий     Решение


Задача 35137

Темы:   [ Площадь круга, сектора и сегмента ]
[ Теорема Пифагора (прямая и обратная) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Хорды и секущие (прочее) ]
Сложность: 3-
Классы: 8,9,10

Даны две концентрические окружности. Хорда большей из них касается меньшей и имеет длину 2.
Найдите площадь кольца, заключенного между окружностями.

Прислать комментарий     Решение

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .