ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Стороны правильного шестиугольника раскрашены через одну в красный и синий цвета. Докажите, что сумма расстояний от точки, лежащей внутри шестиугольника, до прямых, содержащих красные стороны, равна сумме расстояний от этой точки до прямых, содержащих синие стороны.

Вниз   Решение


Найдите точку минимума функции y = (x+11)ex-11 .

ВверхВниз   Решение


Докажите тождество  

ВверхВниз   Решение


Из середины M стороны AC треугольника ABC опущены перпендикуляры MD и ME на стороны AB и BC соответственно. Около треугольников ABE и BCD описаны окружности. Докажите, что расстояние между центрами этих окружностей равно AC/4.

ВверхВниз   Решение


Докажите неравенство для положительных значений переменных:   (a + b + c + d)² ≤ 4(a² + b² + c² + d²).

ВверхВниз   Решение


В бесконечной последовательности  (xn)  первый член x1 – рациональное число, большее 1, и  xn+1 = xn + 1/[xn]  при всех натуральных n.
Докажите, что в этой последовательности есть целое число.

ВверхВниз   Решение


Окружность проходит через соседние вершины M и N прямоугольника MNPQ. Длина касательной, проведённой из точки Q к окружности, равна 1,  PQ = 2.  Найдите все возможные значения, которые может принимать площадь прямоугольника MNPQ, если диаметр окружности равен .

ВверхВниз   Решение


Автор: Охитин С.

Известно, что четыре синих треугольника на рисунке 1 равновелики.

а) Докажите что три красных четырёхугольника на этом рисунке также равновелики.

б) Найдите площадь одного четырёхугольника, если площадь одного синего треугольника равна 1.

ВверхВниз   Решение


Пусть M – середина стороны BC параллелограмма ABCD. В каком отношении отрезок AM делит диагональ BD?

ВверхВниз   Решение


Опишите явный вид многочлена  f(x) = f1(x) + f2(x) + ... + fn(x),  где  fi(x) – многочлены из задачи 61050.

ВверхВниз   Решение


В пространстве дано несколько прямых, причём каждые две из них пересекаются.
Докажите, что либо все прямые проходят через одну точку, либо все прямые лежат в одной плоскости.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 109732

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 6+
Классы: 9,10,11

На плоскости даны два таких конечных набора P1 и P2 выпуклых многоугольников, что любые два многоугольника из разных наборов имеют общую точку и в каждом из двух наборов P1 и P2 есть пара непересекающихся многоугольников. Докажите, что существует прямая, пересекающая все многоугольники обоих наборов.
Прислать комментарий     Решение


Задача 34962

Темы:   [ Принцип Дирихле (прочее) ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 2+
Классы: 7,8,9

Можно ли расположить на плоскости 1000 отрезков так, чтобы каждый отрезок своими концами упирался строго внутрь других отрезков.
Прислать комментарий     Решение


Задача 109422

Темы:   [ Текстовые задачи (прочее) ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 3
Классы: 6,7,8

По двум телевизионным каналам одновременно начали показывать один и тот же фильм. На первом канале фильм разбили на части по 20 минут каждая и вставили между ними двухминутные рекламные паузы. А на втором канале фильм разбили на части по 10 минут каждая и вставили между ними минутные рекламные паузы. На каком канале фильм закончится раньше?

Прислать комментарий     Решение

Задача 35164

Темы:   [ Прямые и плоскости в пространстве (прочее) ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 3+
Классы: 10

В пространстве дано несколько прямых, причём каждые две из них пересекаются.
Докажите, что либо все прямые проходят через одну точку, либо все прямые лежат в одной плоскости.

Прислать комментарий     Решение

Задача 35444

Темы:   [ Покрытия ]
[ Системы отрезков, прямых и окружностей ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 9,10

Коридор покрыт несколькими ковровыми дорожками (возможно, с наложениями). Докажите, что можно убрать несколько дорожек таким образом, чтобы оставшиеся дорожки покрывали коридор и сумма их длин не превышала удвоенной длины коридора.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .