ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы? Среди любых десяти из шестидесяти ребят найдутся трое одноклассников. Докажите, что среди всех них найдутся 15 одноклассников. Дан прямоугольный треугольник. Впишите в него прямоугольник с общим прямым углом, у которого диагональ минимальна. На танцплощадке собрались N юношей и N девушек. Сколькими способами они могут разбиться на пары для участия в очередном танце? В треугольнике $ABC$ вневписанная окружность, лежащая напротив угла $C$, касается стороны $AB$ в точке $T$. Пусть $J$ – центр вневписанной окружности, лежащей напротив угла $A$, a $M$ – середина $AJ$. Докажите, что $MT=MC$. Укажите неравносторонний треугольник, который можно разделить на три равных треугольника. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 142]
В равнобедренном треугольнике АВС угол В равен 30°, АВ = ВС = 6. Проведены высота CD треугольника АВС и высота DE треугольника BDC.
В окружности провели диаметр AB и параллельную ему хорду CD, так, что расстояние между ними равно половине радиуса этой окружности (см. рис.). Найдите угол CAB.
Укажите неравносторонний треугольник, который можно разделить на три равных треугольника.
Дан угол в 30o. Постройте окружность радиуса 2,5, касающуюся одной стороны этого угла и имеющую центр на другой его стороне. Найдите расстояние от центра окружности до вершины угла.
Хорда пересекает диаметр под углом в 30o и делит его на два отрезка, равные 2 и 6. Найдите расстояние от центра окружности до этой хорды.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 142]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке