ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На шахматной доске выбрана клетка. Сумма квадратов расстояний от её центра до центров всех чёрных клеток обозначена через a, а до центров всех белых клеток – через b. Докажите, что a = b. В треугольник с периметром 2p вписана окружность. К этой окружности проведена касательная, параллельная стороне треугольника. Найдите наибольшую возможную длину отрезка этой касательной, заключённого внутри треугольника. Найдите производящие функции последовательностей многочленов Чебышева первого и второго рода:
а) В трёхзначном числе зачеркнули первую цифру слева, затем полученное двузначное число умножили на 7 и получили исходное трёхзначное число. Найдите такое число. На прямой даны четыре точки A, B, C, D в указанном
порядке. Постройте точку M, из которой отрезки AB, BC, CD видны под
равными углами.
Найдите расстояние между точками касания окружностей, вписанных в треугольники ABC и CDA, со стороной AC, если а) AB = 5, BC = 7, CD = DA; б) AB = 7, BC = CD, DA = 9.
На стороне BC равностороннего треугольника ABC взята точка M, а на продолжении стороны AC за точку C – точка N, причём AM = MN. 12 команд сыграли турнир по волейболу в один круг. Две команды одержали ровно по 7 побед. Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности. Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр. Докажите, что
С помощью циркуля и линейки постройте окружность, касающуюся сторон данного угла, причём одной из них — в данной точке.
Найдите первые 99 знаков после запятой в разложении числа На сторонах треугольника ABC взяты точки A1, B1 и C1 так, что AB1 : B1C = cn : an, BC1 : C1A = an : bn и CA1 : A1B = bn : cn (a, b, c – длины сторон треугольника). Описанная окружность треугольника A1B1C1 высекает на сторонах треугольника ABC отрезки длиной ±x, ±y и ±z (знаки выбираются в соответствии с ориентацией треугольника). Докажите, что Докажите, что если α < β и αβ ≠ 0, то Sα(x) ≤ Sβ(x). На сторонах BC, CA и AB треугольника ABC взяты произвольные точки A1, B1 и C1. Пусть a = SAB1C1, b = SA1BC1, c = SA1B1C и u = SA1B1C1. Докажите, что
u3 + (a + b + c)u2
В равносторонний треугольник со стороной a вписана окружность. К окружности проведена касательная так, что её отрезок внутри треугольника равен b. Найдите площадь треугольника, отсеченного этой касательной.
|
Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 772]
В трапеции KLMN известно, что
LM
Через точку C на окружности проведены касательная, а также хорда BC и хорда DC, BD = c. Расстояния от точек B и D до касательной равны b и d. Найдите площадь треугольника BCD.
Окружности S1 и S2 касаются внешним образом в точке F . Прямая l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная прямой l , касается S2 в точке C и пересекает S1 в двух точках. Докажите, что точки A , F и C лежат на одной прямой.
В равносторонний треугольник со стороной a вписана окружность. К окружности проведена касательная, отрезок которой внутри треугольника равен b.
В равносторонний треугольник со стороной a вписана окружность. К окружности проведена касательная так, что её отрезок внутри треугольника равен b. Найдите площадь треугольника, отсеченного этой касательной.
Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 772]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке