Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC с основанием AC проведена медиана BM. На ней взята точка D. Докажите равенство треугольников:
  а) ABD и CBD;
  б) AMD и CMD.

Вниз   Решение


Прямоугольный треугольник ABC  (∠A = 90°)  и два квадрата BEFC и AMNC расположены так, что точки E и A лежат по разные стороны от прямой BC, а точки M и B – по одну сторону от прямой AC. Найдите расстояние между центрами квадратов, если  AB = a.

ВверхВниз   Решение


Внутри треугольника имеются две точки. Расстояние от одной из них до сторон треугольника равны 1, 3 и 15, а от другой (в том же порядке) – 4, 5 и 11.
Найдите радиус вписанной окружности данного треугольника.

ВверхВниз   Решение


С помощью циркуля и линейки проведите прямую, параллельную основаниям трапеции, так, чтобы отрезок этой прямой внутри трапеции делился бы диагоналями на три равные части.

ВверхВниз   Решение


Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E. Известно, что площадь каждого из треугольников ABE и DCE равна 1, площадь всего четырёхугольника не превосходит 4,  AD = 3.  Найдите сторону BC.

ВверхВниз   Решение


В выпуклом пятиугольнике ABCDE углы при вершинах B и D – прямые,  ∠BCA = ∠DCE,  а точка M – середина стороны AE. Доказать, что  MB = MD.

ВверхВниз   Решение


Из точки, лежащей внутри выпуклого n-угольника, проведены лучи, перпендикулярные его сторонам и пересекающие стороны (или их продолжения). На этих лучах отложены векторы a1,...,an, длины которых равны длинам соответствующих сторон. Докажите, что a1 +...+ an = 0.

ВверхВниз   Решение


Пусть a и b — целые числа. Напишем число b справа от числа a. Если число a чётное, то разделим его на 2, если оно нечётное, то сначала вычтем из него единицу, а потом разделим его на 2. Получившееся число a1 напишем под числом a. Справа от числа a1 напишем число 2b. С числом a1 проделаем ту же операцию, что и с числом a, и, получив число a2, напишем его под числом a1. Справа от числа a2 напишем число 4b и так далее. Этот процесс продолжаем до тех пор, пока не получим в левом столбце число 1. Доказать, что сумма тех чисел правого столбца, слева от которых стоят нечётные числа, равна произведению ab.

ВверхВниз   Решение


Прямоугольный треугольник ABC  (∠A = 90°)  и два квадрата BEFC и AMNC расположены так, что точки E и A лежат по разные стороны от прямой BC, а точки M и B – по разные стороны от прямой AC. Найдите расстояние между центрами квадратов, если  AB = a,  AC = b.

Вверх   Решение

Задачи

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 2254]      



Задача 53063

Темы:   [ Описанные четырехугольники ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Окружность высекает на сторонах четырёхугольника равные хорды. Докажите, что в этот четырёхугольник можно вписать окружность.

Прислать комментарий     Решение

Задача 53076

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Прямоугольный треугольник ABC  (∠A = 90°)  и два квадрата BEFC и AMNC расположены так, что точки E и A лежат по разные стороны от прямой BC, а точки M и B – по разные стороны от прямой AC. Найдите расстояние между центрами квадратов, если  AB = a,  AC = b.

Прислать комментарий     Решение

Задача 53077

Тема:   [ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Прямоугольный треугольник ABC  (∠A = 90°)  и два квадрата BEFC и AMNC расположены так, что точки E и A лежат по разные стороны от прямой BC, а точки M и B – по одну сторону от прямой AC. Найдите расстояние между центрами квадратов, если  AB = a.

Прислать комментарий     Решение

Задача 53082

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные подобные треугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

Около окружности описана равнобедренная трапеция ABCD. Боковая сторона AB касается окружности в точке M, а основание AD – в точке N. Отрезки MN и AC пересекаются в точке P, причём  NP : PM = 2.  Найдите отношение  AD : BC.

Прислать комментарий     Решение

Задача 53083

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные подобные треугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

Около окружности описана равнобедренная трапеция ABCD. Меньшее основание BC касается окружности в точке M, боковая сторона CD – в точке N. Высота CE пересекает отрезок MN в точке P, причём  MP : PN = 2.  Найдите отношение  AD : BC.

Прислать комментарий     Решение

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 2254]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .