|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что сумма расстояний от центра правильного семиугольника до всех его вершин меньше, чем сумма расстояний до них от любой другой точки. Коля и Вася за январь получили по 20 оценок, причём Коля получил пятерок столько же, сколько Вася четвёрок, четвёрок столько же, сколько Вася троек, троек столько же, сколько Вася двоек, и двоек столько же, сколько Вася – пятёрок. При этом средний балл за январь у них одинаковый. Сколько двоек за январь получил Коля? Сумма трёх различных наименьших делителей некоторого числа A равна 8. На сколько нулей может оканчиваться число A? Шесть кружков последовательно соединили отрезками. На каждом отрезке записали некоторое число, а в каждом кружке – сумму двух чисел, записанных на входящих в него отрезках. После этого стёрли все числа на отрезках и в одном из кружков (см. рис.). Можно ли найти число, стёртое в кружке? Прямая, параллельная основаниям трапеции, разбивает её на две подобные трапеции. У выпуклого многогранника внутренний двугранный угол при каждом ребре острый. Сколько может быть граней у многогранника? Исследуйте последовательности на сходимость: а) xn + 1 = б) xn + 1 = sin xn, x0 = a в) xn + 1 = Дан треугольник ABC. Известно, что AB = 4, AC = 2 и BC = 3. Биссектриса угла BAC пересекает сторону BC в точке K. Прямая, проходящая через точку B параллельно AC, пересекает продолжение биссектрисы AK в точке M. Найдите KM. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 246]
В прямоугольном треугольнике ABC с прямым углом B биссектриса угла A пересекает сторону BC в точке D. Известно, что BD = 4, DC = 6. Найдите площадь треугольника ADC.
Дан треугольник ABC, в котором AB = 6, BC = 7, AC = 5. Биссектриса угла C пересекает сторону AB в точке D. Найдите площадь треугольника ADC.
В прямоугольном треугольнике ABC с прямым углом A биссектриса угла B пересекает сторону AC в точке D. Известно, что AB = 6, BC = 10. Найдите площадь треугольника DBC
В треугольнике ABC со сторонами AB = 3, BC = 4 и AC = 5 проведена биссектриса BD. В треугольники ABD и BCD вписаны окружности, которые касаются BD в точках M и N соответственно. Найдите MN.
Дан треугольник ABC. Известно, что AB = 4, AC = 2 и BC = 3. Биссектриса угла BAC пересекает сторону BC в точке K. Прямая, проходящая через точку B параллельно AC, пересекает продолжение биссектрисы AK в точке M. Найдите KM.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 246] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|