ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что сумма расстояний от центра правильного семиугольника до всех его вершин меньше, чем сумма расстояний до них от любой другой точки.

Вниз   Решение


Автор: Фомин С.В.

Коля и Вася за январь получили по 20 оценок, причём Коля получил пятерок столько же, сколько Вася четвёрок, четвёрок столько же, сколько Вася троек, троек столько же, сколько Вася двоек, и двоек столько же, сколько Вася – пятёрок. При этом средний балл за январь у них одинаковый. Сколько двоек за январь получил Коля?

ВверхВниз   Решение


Автор: Шноль Д.Э.

Сумма трёх различных наименьших делителей некоторого числа A равна 8. На сколько нулей может оканчиваться число A?

ВверхВниз   Решение


Шесть кружков последовательно соединили отрезками. На каждом отрезке записали некоторое число, а в каждом кружке – сумму двух чисел, записанных на входящих в него отрезках. После этого стёрли все числа на отрезках и в одном из кружков (см. рис.). Можно ли найти число, стёртое в кружке?

ВверхВниз   Решение


Прямая, параллельная основаниям трапеции, разбивает её на две подобные трапеции.
Найдите отрезок этой прямой, заключённый внутри трапеции, если основания равны a и b.

ВверхВниз   Решение


У выпуклого многогранника внутренний двугранный угол при каждом ребре острый. Сколько может быть граней у многогранника?

ВверхВниз   Решение


Исследуйте последовательности на сходимость:
а) xn + 1 = $ {\dfrac{1}{1+x_n}}$,    x0 = 1;
б) xn + 1 = sin xn,     x0 = a $ \in$ (0;$ \pi$);
в) xn + 1 = $ \sqrt{a+x}$,    a > 0, x0 = 0.

ВверхВниз   Решение


Дан треугольник ABC. Известно, что  AB = 4,  AC = 2  и  BC = 3.  Биссектриса угла BAC пересекает сторону BC в точке K. Прямая, проходящая через точку B параллельно AC, пересекает продолжение биссектрисы AK в точке M. Найдите KM.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 246]      



Задача 55066

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC с прямым углом B биссектриса угла A пересекает сторону BC в точке D. Известно, что BD = 4, DC = 6. Найдите площадь треугольника ADC.

Прислать комментарий     Решение


Задача 55067

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Формула Герона ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC, в котором AB = 6, BC = 7, AC = 5. Биссектриса угла C пересекает сторону AB в точке D. Найдите площадь треугольника ADC.

Прислать комментарий     Решение


Задача 55068

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC с прямым углом A биссектриса угла B пересекает сторону AC в точке D. Известно, что AB = 6, BC = 10. Найдите площадь треугольника DBC

Прислать комментарий     Решение


Задача 52749

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Две касательные, проведенные из одной точки ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC со сторонами  AB = 3,  BC = 4  и  AC = 5  проведена биссектриса BD. В треугольники ABD и BCD вписаны окружности, которые касаются BD в точках M и N соответственно. Найдите MN.

Прислать комментарий     Решение

Задача 53207

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC. Известно, что  AB = 4,  AC = 2  и  BC = 3.  Биссектриса угла BAC пересекает сторону BC в точке K. Прямая, проходящая через точку B параллельно AC, пересекает продолжение биссектрисы AK в точке M. Найдите KM.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 246]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .