ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В прямоугольном треугольнике ABC угол C — прямой, а сторона CA = 4 . На катете BC взята точка D , причём CD = 1 . Окружность радиуса проходит через точки C и D и касается в точке C окружности, описанной около треугольника ABC . Найдите площадь треугольника ABC .

   Решение

Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 329]      



Задача 64982

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Касающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

Автор: Рожкова М.

В треугольнике ABC середины сторон AC, BC, вершина C и точка пересечения медиан лежат на одной окружности.
Докажите, что она касается окружности, проходящей через вершины A, B и ортоцентр треугольника ABC.

Прислать комментарий     Решение

Задача 102379

Темы:   [ Вспомогательные подобные треугольники ]
[ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 8,9

Две окружности касаются внешним образом в точке A. Прямая, проходящая через точку A, пересекает первую окружность в точке B, а вторую окружность – в точке C. Касательная в точке B к первой окружности пересекает вторую окружность в точках D и E (точка D лежит между B и E). Известно, что
AB = 5  и  AC = 4.  Найдите длину отрезка CE и расстояние от точки A до центра окружности, касающейся отрезка AD и продолжений отрезков ED и EA за точки D и A соответственно.

Прислать комментарий     Решение

Задача 102380

Темы:   [ Вспомогательные подобные треугольники ]
[ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 8,9

Две окружности касаются внешним образом в точке K. Прямая, проходящая через точку K, пересекает первую окружность в точке L, а вторую – в точке M. Касательная к первой окружности, проходящая через точку L, пересекает вторую окружность в точках A и B (точка B лежит между A и L). Известно, что  BM = 3  и  KM = 1.  Найдите длину отрезка KL и расстояние от точки L до центра окружности, касающейся отрезка KB и продолжений отрезков AB и AK за точки B и K соответственно.

Прислать комментарий     Решение

Задача 52591

Темы:   [ Построения ]
[ Касающиеся окружности ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки впишите в данную окружность три равных окружности, которые касались бы попарно между собой и данной окружности.

Прислать комментарий     Решение


Задача 53214

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Касающиеся окружности ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

В прямоугольном треугольнике ABC угол C — прямой, а сторона CA = 4 . На катете BC взята точка D , причём CD = 1 . Окружность радиуса проходит через точки C и D и касается в точке C окружности, описанной около треугольника ABC . Найдите площадь треугольника ABC .
Прислать комментарий     Решение


Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 329]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .