Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых выражаются целыми числами.
Докажите, что произведение этих чисел не может оканчиваться на 1988.

Вниз   Решение


Стороны треугольника ABC касаются вписанной окружности в точках K, P и M, причём точка M расположена на стороне BC. Найдите угол KMP, если  ∠A = 2α.

ВверхВниз   Решение


Отрезки, соединяющие основания высот остроугольного треугольника, равны 8, 15 и 17. Найдите площадь треугольника.

ВверхВниз   Решение


Каждая из 9 прямых разбивает квадрат на два четырхугольника, площади которых относятся как 2:3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.

ВверхВниз   Решение


По кругу расставлено не менее четырёх неотрицательных чисел, в сумме равных единице.
Докажите, что сумма всех попарных произведений соседних чисел не больше ¼.

ВверхВниз   Решение


M1, M2,..., M6 — середины сторон выпуклого шестиугольника A1A2...A6. Докажите, что существует треугольник, стороны которого равны и параллельны отрезкам M1M2, M3M4, M5M6.

ВверхВниз   Решение


В прямоугольном треугольнике ABC с равными катетами AC и BC на стороне AC как на диаметре построена окружность, пересекающая сторону AB в точке M. Найдите расстояние от вершины B до центра этой окружности, если BM = $ \sqrt{2}$.

ВверхВниз   Решение


Окружность проходит через середины гипотенузы AB и катета BC прямоугольного треугольника ABC и касается катета AC. В каком отношении точка касания делит катет AC.

ВверхВниз   Решение


Автор: Фольклор

Посёлок построен в виде квадрата 3 квартала на 3 квартала (кварталы – квадраты со стороной b, всего 9 кварталов). Какой наименьший путь должен пройти асфальтоукладчик, чтобы заасфальтировать все улицы, если он начинает и кончает свой путь в угловой точке A? (Стороны квадрата – тоже улицы).

ВверхВниз   Решение


В четырёхугольнике ABCD опущены перпендикуляры AM и CP на диагональ BD, а также BN и DQ на диагональ AC.
Доказать, что четырёхугольники ABCD и MNPQ подобны.

ВверхВниз   Решение


От квадрата отрезан прямоугольный треугольник, сумма катетов которого равна стороне квадрата.
Докажите, что сумма трёх углов, под которыми видна из трёх оставшихся вершин его гипотенуза, равна 90°.

Вверх   Решение

Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 2254]      



Задача 53110

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Диаметр, основные свойства ]
Сложность: 3+
Классы: 8,9

В равнобедренной трапеции с острым углом α при основании окружность, построенная на боковой стороне как на диаметре, касается другой боковой стороны.
В каком отношении она делит большее основание трапеции?

Прислать комментарий     Решение

Задача 53183

Темы:   [ Ромбы. Признаки и свойства ]
[ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Сторона ромба ABCD равна 5. В этот ромб вписана окружность радиуса 2,4.
Найдите расстояние между точками, в которых эта окружность касается сторон AB и BC, если диагональ AC меньше диагонали BD.

Прислать комментарий     Решение

Задача 53206

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 8,9

Дана равнобедренная трапеция ABCD. Известно, что  AD = 10,  BC = 2,  AB = CD = 5.  Биссектриса угла BAD пересекает продолжение основания BC
в точке K. Найдите биссектрису угла ABK в треугольнике ABK.

Прислать комментарий     Решение

Задача 53297

Темы:   [ Ромбы. Признаки и свойства ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3+
Классы: 8,9

Дан ромб с острым углом $ \alpha$. Какую часть площади ромба составляет площадь вписанного в него круга?

Прислать комментарий     Решение


Задача 53361

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 – на стороне BC и т.д.).
Докажите, что центры обоих параллелограммов совпадают.

Прислать комментарий     Решение

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 2254]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .