ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На основании AC равнобедренного треугольника ABC взята точка
D, а на отрезке BD – точка K так, что AD : DC = ∠AKD : ∠DKC = 2 : 1. |
Страница: << 120 121 122 123 124 125 126 >> [Всего задач: 2247]
Каждая сторона квадрата ABCD разделена на три равные части и соответствующие точки деления на противоположных сторонах соединены отрезками (см. рис.). Докажите, что ∠AKM = ∠CDN.
На сторонах AD и DC ромба ABCD построены правильные треугольники AKD и DMC, причём точка K лежит по ту же сторону от AD, что и прямая BC, а точка M – по другую сторону от DC, чем AB. Докажите, что точки B, K и M лежат на одной прямой.
На основании AC равнобедренного треугольника ABC взята точка
D, а на отрезке BD – точка K так, что AD : DC = ∠AKD : ∠DKC = 2 : 1.
Докажите, что точка пересечения продолжений боковых сторон трапеции, середины оснований и точка пересечения диагоналей лежат на одной прямой.
M и N – середины сторон AD и BC прямоугольника ABCD. На продолжении отрезка DC за точку D взята точка P, Q – точка пересечения прямых PM и AC.
Страница: << 120 121 122 123 124 125 126 >> [Всего задач: 2247] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|