Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Среди всех таких чисел n, что любой выпуклый 100-угольник можно представить в виде пересечения (т. е. общей части) n треугольников, найдите наименьшее.

Вниз   Решение


На плоскости расположено 20 точек, никакие три из которых не лежат на одной прямой, из них 10 синих и 10 красных.
Докажите, что можно провести прямую, по каждую сторону которой лежит пять синих и пять красных точек.

ВверхВниз   Решение


Постройте треугольник по стороне, противолежащему углу и сумме двух других сторон.

ВверхВниз   Решение



В основании четырехугольной пирамиды лежит ромб ABCD, в котором $ \angle$BAD = 60o. Известно, что SD = SB, SA = SC = AB. На ребре DC взята точка E так, что площадь треугольника BSE наименьшая среди площадей всех сечения пирамиды, содержащих отрезок BS и пересекающих отрезок DC. Найдите отношение DE : EC.

ВверхВниз   Решение


Назовём натуральное число хорошим, если в его десятичной записи встречаются подряд цифры 1, 9, 7, 3, и плохим — в противном случае. (Например, число 197 639 917 — плохое, а 116 519 732 — хорошее.) Докажите, что существует такое натуральное число n, что среди всех n-значных чисел (от 10n – 1 до 10n – 1) больше хороших, чем плохих.

Постарайтесь найти возможно меньшее такое n.

ВверхВниз   Решение


Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что  EK || AB  и найдите площадь трапеции ABKE.

ВверхВниз   Решение


В прямоугольном треугольнике ABC с равными катетами AC и BC на стороне AC как на диаметре построена окружность, пересекающая сторону AB в точке M. Найдите расстояние от вершины B до центра этой окружности, если BM = $ \sqrt{2}$.

ВверхВниз   Решение


Пусть c — наибольшая сторона треугольника со сторонами a, b, c. Докажите, что если a2 + b2 > c2, то треугольник остроугольный, а если a2 + b2 < c2, — тупоугольный.

ВверхВниз   Решение


Решите уравнение  2 sin πx/2 – 2 cos πx = x5 + 10x – 54.

ВверхВниз   Решение


Равнобедренные треугольники ABC  (AB = BC)  и   A1B1C1  (A1B1 = B1C1)  подобны и  AB : A1B1 = 2 : 1.  Вершины A1, B1 и C1 расположены соответственно на сторонах CA, AB и BC, причём   A1B1AC.  Найдите угол B.

ВверхВниз   Решение


В равнобедренной трапеции ABCD основания  AD = 12,  BC = 6,  высота равна 4. Диагональ AC делит угол BAD трапеции на две части. Какая из них больше?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 688]      



Задача 52571

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанный угол равен половине центрального ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3-
Классы: 8,9

Докажите, что всякая трапеция, вписанная в окружность, — равнобедренная.

Прислать комментарий     Решение


Задача 53842

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Против большей стороны лежит больший угол ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

В равнобедренной трапеции ABCD основания  AD = 12,  BC = 6,  высота равна 4. Диагональ AC делит угол BAD трапеции на две части. Какая из них больше?

Прислать комментарий     Решение

Задача 53881

Тема:   [ Замечательное свойство трапеции ]
Сложность: 3-
Классы: 8,9

Через точку D, взятую на стороне AB треугольника ABC, проведена прямая, параллельная AC и пересекающая сторону BC в точке E.
Докажите, что прямые AE, CD и медиана, проведённая из вершины B, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 54158

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные равные треугольники ]
Сложность: 3-
Классы: 8,9

Пусть P – основание перпендикуляра, опущенного из вершины C меньшего основания BC равнобедренной трапеции ABCD на её большее основание AD. Найдите DP и AP, если основания трапеции равны a и b  (a > b).

Прислать комментарий     Решение

Задача 54159

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Параллелограмм Вариньона ]
Сложность: 3-
Классы: 8,9

Найдите углы и стороны четырёхугольника с вершинами в серединах сторон равнобедренной трапеции, диагонали которой равны 10 и пересекаются под углом 40o.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 688]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .