ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точка D лежит на стороне BC треугольника ABC, а точка O расположена на отрезке AD, причём AO : OD = 9 : 4. Прямая, проходящая через вершину B и точку O, пересекает сторону AC в точке E, причём BO : OE = 5 : 6. Найдите отношение, в котором точка E делит сторону AC. Решение |
Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 829]
Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные точке O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны, а прямые AA1, BB1 и CC1 пересекаются в одной точке.
На сторонах AD и DC ромба ABCD построены правильные треугольники AKD и DMC, причём точка K лежит по ту же сторону от AD, что и прямая BC, а точка M – по другую сторону от DC, чем AB. Докажите, что точки B, K и M лежат на одной прямой.
Пусть AE и CD – биссектрисы треугольника ABC. Докажите, что если ∠BDE : ∠EDC = ∠BED : ∠DEA, то треугольник ABC — равнобедренный.
Площадь треугольника ABC равна 2, сторона BC равна 1, ∠BCA = 60°. Точка D стороны AB удалена от точки B на 3, M – точка пересечения CD с медианой BE. Найдите отношение BM : ME.
Точка D лежит на стороне BC треугольника ABC, а точка O расположена на отрезке AD, причём AO : OD = 9 : 4. Прямая, проходящая через вершину B и точку O, пересекает сторону AC в точке E, причём BO : OE = 5 : 6. Найдите отношение, в котором точка E делит сторону AC.
Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 829] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|