Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

На продолжениях медиан AK, BL и CM треугольника ABC взяты точки P, Q и R, причём KP = $ {\frac{1}{2}}$AK, LQ = $ {\frac{1}{2}}$BL и MR = $ {\frac{1}{2}}$CM. Найдите площадь треугольника PQR, если площадь треугольника ABC равна 1.

Вниз   Решение


Отрезок постоянной длины движется по плоскости так, что его концы скользят по сторонам прямого угла.
По какой траектории движется середина этого отрезка?

ВверхВниз   Решение


Даны две непересекающиеся окружности радиусов R и 2R. К ним проведены общие касательные, которые пересекаются в точке A отрезка, соединяющего центры окружностей. Расстояние между центрами окружностей равно 2R$ \sqrt{3}$. Найдите площадь фигуры, ограниченной отрезками касательных, заключёнными между точками касания и большими дугами окружностей, соединяющими точки касания.

ВверхВниз   Решение


Докажите, что число состоящее из 243 единиц делится на 243.

ВверхВниз   Решение


Внутри выпуклого четырёхугольника расположены четыре окружности, каждая из которых касается двух соседних сторон четырёхугольника и двух окружностей (внешним образом). Известно, что в четырёхугольник можно вписать окружность. Докажите, что по крайней мере две из данных окружностей равны.

ВверхВниз   Решение


На стороне BC треугольника ABC как на диаметре построена окружность, пересекающая отрезок AB в точке D. Найдите отношение площадей треугольников ABC и BCD, если известно, что AC = 15, BC = 20 и $ \angle$ABC = $ \angle$ACD.

ВверхВниз   Решение


Диагонали выпуклого четырёхугольника равны c и d и пересекаются под углом 45o. Найдите отрезки, соединяющие середины противоположных сторон четырёхугольника.

ВверхВниз   Решение


Найдите наибольшее значение функции y = ln (x+4)5-5x на отрезке [-3,5;0] .

ВверхВниз   Решение


Точки A, B, C и D последовательно расположены на окружности, причём центр O окружности расположен внутри четырёхугольника ABCD. Точки K, L, M и N – середины отрезков AB, BC, CD и AD соответственно. Докажите, что  ∠KON + ∠MOL = 180°.

ВверхВниз   Решение


На сторонах произвольного треугольника ABC во внешнюю сторону построены равносторонние треугольники ABC1, A1BC и AB1C.
Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.

ВверхВниз   Решение


Найдите геометрическое место точек, из которых проведены касательные к данной окружности, равные заданному отрезку.

ВверхВниз   Решение


Докажите, что  1n + 2n + ... + (n – 1)n  делится на n при нечётном n.

ВверхВниз   Решение


Радиус окружности, описанной около прямоугольного треугольника, относится к радиусу вписанной в него окружности как 5:2. Найдите площадь треугольника, если один из его катетов равен a.

ВверхВниз   Решение


На сторонах AB, BC, CD и DA произвольного четырёхугольника ABCD взяты точки K, L, M и N соответственно. Обозначим через S1, S2, S3 и S4 площади треугольников AKN, BKL, CLM и DMN соответственно. Докажите, что  

ВверхВниз   Решение


Докажите, что уравнения
  а)  8x4 + 4y4 + 2z4 = t4;
  б)  x² + y² + z² = 2xyz;
  в)  x² + y² + z² + u² = 2xyzu;
  г)  3n = x² + y²
не имеют решений в натуральных числах.

ВверхВниз   Решение


Даны отрезки a и b. С помощью циркуля и линейки постройте отрезок $ \sqrt{ab}$.

ВверхВниз   Решение


Сформулируйте теорему, обратную теореме Пифагора. Верна ли она?

Вверх   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 449]      



Задача 102208

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Площадь треугольника ABC равна 20. Угол между сторонами AB и AC острый. Найдите сторону BC, если AB = 8, AC = 13.
Прислать комментарий     Решение


Задача 52830

Темы:   [ Признаки подобия ]
[ Теорема косинусов ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 3
Классы: 8,9

В треугольнике ABC на средней линии DE, параллельной AB, как на диаметре построена окружность, пересекающая стороны AC и BC в точках M и N.
Найдите MN, если  BC = a,  AC = b,  AB = c.

Прислать комментарий     Решение

Задача 54209

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Сформулируйте теорему, обратную теореме Пифагора. Верна ли она?

Прислать комментарий     Решение


Задача 54865

Темы:   [ Параллелограмм Вариньона ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

В четырёхугольнике ABCD диагонали AC и BD относятся как 1:4 , а угол между ними равен 60o . Чему равен больший из отрезков, соединяющих середины противоположных сторон четырёхугольника ABCD , если меньший равен ?
Прислать комментарий     Решение


Задача 57521

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

Докажите, что среди всех треугольников с фиксированным углом $ \alpha$ и площадью S наименьшую длину стороны BC имеет равнобедренный треугольник с основанием BC.
Прислать комментарий     Решение


Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 449]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .