Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

По кругу записаны 100 целых чисел. Каждое из чисел больше суммы двух чисел, следующих за ним по часовой стрелке.
Какое наибольшее количество положительных чисел может быть среди записанных?

Вниз   Решение


a, b, c – такие три числа, что  abc > 0  и  a + b + c > 0.  Доказать, что  an + bn + cn > 0  при любом натуральном n.

ВверхВниз   Решение


Дана трапеция ABCD с основаниями AD = 3$ \sqrt{39}$ и BC = $ \sqrt{39}$. Кроме того дано, что угол BAD равен 30o, а угол ADC равен 60o. Через точку D проходит прямая, делящая трапецию на две равновеликие фигуры. Найдите длину отрезка этой прямой, находящегося внутри трапеции.

ВверхВниз   Решение


В ящиках лежат орехи. Известно, что в среднем в каждом ящике 10 орехов, а среднее арифметическое квадратов чисел орехов в ящиках меньше 1000. Докажите, что по крайней мере 10% ящиков не пустые.

ВверхВниз   Решение


Докажите равенство:

arctg 1 + arctg $\displaystyle {\textstyle\dfrac{1}{2}}$ + arctg $\displaystyle {\textstyle\dfrac{1}{3}}$ = $\displaystyle {\dfrac{\pi}{2}}$.


ВверхВниз   Решение


Точка M лежит на стороне AB треугольника ABC,  AM = a,  BM = b,  CM = c,  c < a,  c < b.
Найдите наименьший радиус описанной окружности такого треугольника.

ВверхВниз   Решение


Докажите, что если  a, b, c, d, x, y, u, v  – вещественные числа и  abcd > 0,  то

(ax + bu)(av + by)(cx + dv)(cu + dy) ≥ (acuvx + bcuxy + advxy + bduvy)(acx + bcu + adv + bdy).

ВверхВниз   Решение


В равнобедренном треугольнике ABC (AB = AC) проведены биссектрисы AA1, BB1 и CC1. Площадь треугольника ABC относится к площади треугольника A1B1C1 как $ {\frac{9}{2}}$. Найдите отношение периметра треугольника A1B1C1 к периметру треугольника ABC.

ВверхВниз   Решение


На сторонах AB, BC, CD, DA прямоугольника ABCD взяты соответственно точки K, L, M, N, отличные от вершин. Известно, что   KL || MN  и
KMNL.  Докажите, что точка пересечения отрезков KM и LN лежит на диагонали BD прямоугольника.

ВверхВниз   Решение


Окружность касается одной стороны прямого угла с вершиной O и пересекает вторую сторону в точках A и B. Найдите радиус окружности, если OA = a и OB = b.

ВверхВниз   Решение


Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение радиуса вписанной окружности к расстоянию между центрами вписанной и описанной окружностей равно равно m. Найдите углы треугольника.

ВверхВниз   Решение


В треугольнике ABC, площадь которого равна S, проведены биссектриса CE и медиана BD, пересекающиеся в точке O. Найдите площадь четырёхугольника ADOE, зная, что BC = a, AC = b.

ВверхВниз   Решение


В прямоугольном треугольнике медианы, проведённые из вершин острых углов, равны   и  .  Найдите гипотенузу треугольника.

Вверх   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 5298]      



Задача 54249

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Перенос стороны, диагонали и т.п. ]
Сложность: 3-
Классы: 8,9

Докажите, что в прямоугольной трапеции разность квадратов диагоналей равна разности квадратов оснований.

Прислать комментарий     Решение

Задача 54258

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

В прямоугольном треугольнике медианы, проведённые из вершин острых углов, равны   и  .  Найдите гипотенузу треугольника.

Прислать комментарий     Решение

Задача 54669

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства касательной ]
Сложность: 3-
Классы: 8,9

Окружность радиуса R, построенная на большем основании AD трапеции ABCD как на диаметре, касается меньшего основания BC в точке C, а боковой стороны AB — в точке A. Найдите диагонали трапеции.

Прислать комментарий     Решение


Задача 54698

Тема:   [ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Сторона треугольника равна 2$ \sqrt{7}$, а две другие стороны образуют угол в 30o и относятся как 1 : 2$ \sqrt{3}$. Найдите эти стороны.

Прислать комментарий     Решение


Задача 54701

Тема:   [ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Одна из сторон треугольника равна 6, вторая сторона равна 2$ \sqrt{7}$, а противолежащий ей угол равен 60o. Найдите третью сторону треугольника.

Прислать комментарий     Решение


Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 5298]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .