ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть $O$ – центр описанной окружности остроугольного треугольника $ABC$, точка $M$ – середина стороны $AC$. Прямая $BO$ пересекает высоты $AA_1$ и $CC_1$ в точках $H_a$ и $H_c$ соответственно. Описанные окружности треугольников $BH_aA$ и $BH_cC$ вторично пересекаются в точке $K$. Докажите, что $K$ лежит на прямой $BM$. Через данную точку проведите прямую, пересекающую две данные прямые под равными углами. Можно ли из последовательности 1, ½, ⅓, ... выбрать (сохраняя порядок) Пусть
A, B, C, D - последовательные вершины квадрата, а
точка O расположена внутри квадрата. Известно, что
OC = OD =
В однокруговом шахматном турнире назовём партию неправильной, если выигравший её шахматист в итоге набрал очков меньше, чем проигравший. Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке M, биссектрисы B1B2 и C1C2 треугольника
AB1C1 пересекаются в точке N. В четырёхугольнике ABCD AB = CD, M и K – середины BC и AD. Докажите, что угол между MK и AC равен полусумме углов BAC и DCA.
Найдите радиус окружности, вписанной в ромб со стороной a и острым углом 60o.
В трапеции ABCD биссектрисы углов A и D пересекаются в точке E, лежащей на боковой стороне BC. Эти биссектрисы разбивают трапецию на три треугольника, в которые вписали окружности. Одна из этих окружностей касается основания AB в точке K, а две другие касаются биссектрисы DE в точках M и N. Докажите, что BK = MN. В треугольной пирамиде противоположные рёбра попарно равны. Докажите, что центры описанной и вписанной сфер совпадают. На ребрах произвольного тетраэдра указали направления. Может ли сумма полученных таким образом шести векторов оказаться равной нуль-вектору? Разрежьте произвольный тупоугольный треугольник на 7
остроугольных.
На прямой отмечено 100 точек, и ещё одна точка отмечена вне прямой. Рассмотрим все треугольники с вершинами в этих точках. Диагонали вписанного четырёхугольника ABCD пересекаются в точке N. Описанные окружности треугольников ANB и CND повторно пересекают стороны BC и AD в точках A1, B1, C1, D1. Докажите, что четырёхугольник A1B1C1D1 вписан в окружность с центром N. Можно ли нарисовать девятизвенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев?
Сфера с центром в точке O проходит через вершины A , B и C
треугольной пирамиды ABCD и пересекает прямые AD , BD и CD в точках
K , L и M соответственно. Известно, что AD = 10 , BC:BD = 3:2 и
AB:CD = 4
В ромбе ABCD точки M и N — середины сторон BC и CD
соответственно. Найдите угол MAN, если
|
Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 2254]
В равнобедренную трапецию площадью 28 вписана окружность радиуса 2. Найдите боковую сторону трапеции.
Перпендикуляр, опущенный из вершины прямоугольника на его диагональ, делит её в отношении 1:3. Найдите диагональ, если известно, что точка её пересечения с другой диагональю удалена от большей стороны на расстояние, равное 2.
В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Найдите стороны этого прямоугольника, зная, что одна из них вдвое больше другой и что диагональ квадрата равна 12.
Найдите радиус окружности, вписанной в ромб со стороной a и острым углом 60o.
В ромбе ABCD точки M и N — середины сторон BC и CD
соответственно. Найдите угол MAN, если
Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 2254]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке