Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

На клетчатой бумаге выбраны три точки A, B, C, находящиеся в вершинах клеток. Докажите, что если треугольник ABC остроугольный, то внутри или на сторонах его есть по крайней мере еще одна вершина клетки.

Вниз   Решение


Даны пять точек некоторой окружности. С помощью одной линейки постройте шестую точку этой окружности.

ВверхВниз   Решение


Докажите, что все углы, образованные сторонами и диагоналями правильного n-угольника, кратны  180°/n.

ВверхВниз   Решение


В прямоугольном треугольнике ABC с прямым углом C, углом B, равным 30o, и катетом CA = 1, проведена медиана CD. Кроме того, из точки D под углом 15o к гипотенузе проведена прямая, пересекающая отрезок BC в точке F. Найдите площадь треугольника CDF. Укажите её приближённое значение в виде десятичной дроби с точностью до 0,01.

ВверхВниз   Решение


На сторонах $AB$, $BC$, $CA$ треугольника $ABC$ выбраны точки $P$, $Q$, $R$ соответственно так, что $AP=PR$, $CQ=QR$. Точка $H$ – ортоцентр треугольника $PQR$, точка $O$ – центр описанной окружности треугольника $ABC$. Докажите, что $OH \parallel AC$.

ВверхВниз   Решение


Сходимость итерационного процесса. Предположим, что функция f (x) отображает отрезок [a;b] в себя, и на этом отрезке | f'(x)| $ \leqslant$ q < 1. Докажите, что уравнение f (x) = x имеет на отрезке [a;b] единственный корень x*. Докажите, что при решении этого уравнения методом итераций будут выполняться неравенства:

| xn + 1 - xn| $\displaystyle \leqslant$ | x1 - x0| . qn,    | x* - xn| $\displaystyle \leqslant$ | x1 - x0| . $\displaystyle {\frac{q^n}{1-q}}$.


ВверхВниз   Решение


В равнобедренном треугольнике боковая сторона равна b. Расстояние между основаниями биссектрис треугольника, проведённых к боковым сторонам, равно m. Найдите основание треугольника.

ВверхВниз   Решение


В параллели 7-х классов 100 учеников, некоторые из которых дружат друг с другом. 1 сентября они организовали несколько клубов, каждый из которых основали три ученика (у каждого клуба свои). Дальше каждый день в каждый клуб вступали те ученики, кто дружил хотя бы с тремя членами клуба. К 19 февраля в клубе «Гепарды» состояли все ученики параллели. Могло ли получиться так, что в клубе «Черепахи» в этот же день состояло ровно 50 учеников?

ВверхВниз   Решение


Существует ли выпуклый четырёхугольник, каждая диагональ которого делит его на два остроугольных треугольника?

ВверхВниз   Решение


В треугольнике ABC проведена биссектриса CQ. Около треугольника BCQ описана окружность радиуса 1/3, центр которой лежит на отрезке AC.
Найдите площадь треугольника ABC, если  AQ : AB = 2 : 3.

Вверх   Решение

Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 401]      



Задача 53734

Темы:   [ Вспомогательная окружность ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

Внутри треугольника ABC с острыми углами при вершинах A и C взята точка K, причём  ∠AKB = 90°,  ∠CKB = 180° – ∠C.
В каком отношении прямая BK делит сторону AC, если высота, опущенная на AC, делит эту сторону в отношении λ, считая от вершины A?

Прислать комментарий     Решение

Задача 54387

Темы:   [ Ромбы. Признаки и свойства ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

Дан ромб KLMN. На продолжении стороны KN за точку N взята точка P так, что  KP = 40.  Прямые KM и LP пересекаются в точке O. Точки K, L и O лежат на окружности радиуса 15 с центром на отрезке KP. Найдите KM.

Прислать комментарий     Решение

Задача 54389

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC проведена биссектриса CQ. Около треугольника BCQ описана окружность радиуса 1/3, центр которой лежит на отрезке AC.
Найдите площадь треугольника ABC, если  AQ : AB = 2 : 3.

Прислать комментарий     Решение

Задача 54676

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 8,9

Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке H, причём  CH = C1H  и  BH = 2B1H.  Найдите угол A.

Прислать комментарий     Решение

Задача 54899

Темы:   [ Пересекающиеся окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Радикальная ось ]
Сложность: 4-
Классы: 8,9

Две окружности пересекаются в точках A и B. Хорда CD первой окружности имеет с хордой EF второй окружности общую точку M. Известно, что  BM = 2,  AB = 3CM = 9EM,  MD = 2CM,  MF = 6CM.  Какие значения может принимать длина отрезка AM?

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .