ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На гипотенузе и катетах прямоугольного треугольника как на диаметрах построены полуокружности так, как показано на рисунке. Докажите, что сумма площадей заштрихованных "луночек" равна площади треугольника.

   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 1396]      



Задача 54362

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Медиана, проведенная к гипотенузе ]
[ Теорема Пифагора (прямая и обратная) ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике ABC  (∠C = 90°)  проведены высота CD и медиана CE. Площади треугольников ABC и CDE равны соответственно 10 и 3. Найдите AB.

Прислать комментарий     Решение

Задача 54363

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Медиана, проведенная к гипотенузе ]
[ Теорема Пифагора (прямая и обратная) ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике ABC  (∠C = 90°)  проведены высота CD и медиана CE. Площади треугольников ACD и ECB равны соответственно 4 и 10. Найдите AB.

Прислать комментарий     Решение

Задача 54487

Темы:   [ Формула Герона ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC даны три стороны:  AB = 26,  BC = 30  и  AC = 28.  Найдите часть площади этого треугольника, заключённую между высотой и биссектрисой, проведёнными из вершины B.

Прислать комментарий     Решение

Задача 54505

 [Луночки Гиппократа]
Темы:   [ Площадь круга, сектора и сегмента ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

На гипотенузе и катетах прямоугольного треугольника как на диаметрах построены полуокружности так, как показано на рисунке. Докажите, что сумма площадей заштрихованных "луночек" равна площади треугольника.

Прислать комментарий     Решение


Задача 54900

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Неравенства с площадями ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC  AC ≤ 3,  BC ≤ 4,  SABC ≥ 6.  Найдите радиус его описанной окружности.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 1396]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .