ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

С помощью циркуля и линейки около данного треугольника опишите равносторонний треугольник с наибольшим возможным периметром.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]      



Задача 78112

Тема:   [ Экстремальные свойства треугольника (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольнике известны две стороны a и b. Какой должна быть третья сторона, чтобы наибольший угол треугольника имел наименьшую величину?
Прислать комментарий     Решение


Задача 54615

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ ГМТ - окружность или дуга окружности ]
[ Периметр треугольника ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки около данного треугольника опишите равносторонний треугольник с наибольшим возможным периметром.

Прислать комментарий     Решение

Задача 55457

Темы:   [ Треугольник (экстремальные свойства) ]
[ Построения (прочее) ]
[ Вневписанные окружности ]
[ Окружность, вписанная в угол ]
Сложность: 4-
Классы: 8,9,10

С помощью циркуля и линейки проведите через данную точку прямую, отсекающую от данного угла треугольник наименьшего возможного периметра.

Прислать комментарий     Решение

Задача 66780

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Против большей стороны лежит больший угол ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 8,9,10,11

Пусть $A_1A_2A_3$ – остроугольный треугольник, радиус описанной окружности равен $1$, $O$ – ее центр. Из вершин $A_i$ проведены чевианы через $O$ до пересечения с противолежащими сторонами в точках $B_i$ соответственно $(i=1, 2, 3)$.

(а) Из трех отрезков $B_iO$ выберем самый длинный. Какова его наименьшая возможная длина?

(б) Из трех отрезков $B_iO$ выберем самый короткий. Какова его наибольшая возможная длина?

Прислать комментарий     Решение

Задача 54928

Темы:   [ Треугольник (экстремальные свойства) ]
[ Отношение, в котором биссектриса делит сторону ]
[ Формула Герона ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9,10

В треугольнике ABC со стороной AC = 8 проведена биссектриса BL. Известно, что площади треугольников ABL и BLC относятся как 3 : 1. Найдите биссектрису BL, при которой высота, опущенная из вершины B на основание AC, будет наибольшей.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .