ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

С помощью циркуля и линейки впишите ромб в данный параллелограмм так, чтобы стороны ромба были параллельны диагоналям параллелограмма, а вершины ромба лежали бы на сторонах параллелограмма.

   Решение

Задачи

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 484]      



Задача 54584

Темы:   [ Построение треугольников по различным элементам ]
[ Метод ГМТ ]
[ Удвоение медианы ]
Сложность: 4
Классы: 8,9

Постройте треугольник по углу и медиане и высоте, проведённым из вершины этого угла.

Прислать комментарий     Решение


Задача 54613

Темы:   [ Построения ]
[ Касающиеся окружности ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте окружность, касающуюся двух данных окружностей, причём одной из них — в данной точке.

Прислать комментарий     Решение


Задача 54624

Темы:   [ Подобные треугольники и гомотетия (построения) ]
[ Ромбы. Признаки и свойства ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки впишите ромб в данный параллелограмм так, чтобы стороны ромба были параллельны диагоналям параллелограмма, а вершины ромба лежали бы на сторонах параллелограмма.

Прислать комментарий     Решение


Задача 55044

Темы:   [ Построения ]
[ Перегруппировка площадей ]
[ Медиана делит площадь пополам ]
Сложность: 4
Классы: 8,9

Через точку K , данную на стороне AB треугольника ABC , проведите прямую так, чтобы она разделила площадь треугольника пополам.
Прислать комментарий     Решение


Задача 55477

Темы:   [ Построения ]
[ Метод ГМТ ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте прямую, на которой две данные окружности высекают хорды, соответственно равные двум заданным отрезкам.

Прислать комментарий     Решение


Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 484]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .