ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В параллелограмме соединены середина каждой стороны с концом следующей стороны, отчего получился внутренний параллелограмм.
Докажите, что его площадь составляет ⅕ площади данного параллелограмма.

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1396]      



Задача 54931

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены высоты AE и CD. Найдите сторону AB, если BD = 18, BC = 30, AE = 20.

Прислать комментарий     Решение


Задача 54955

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

На сторонах AB и AD параллелограмма ABCD взяты точки M и N так, что прямые MC и NC разбивают параллелограмм на три равновеликие части.
Найдите MN, если  BD = d.

Прислать комментарий     Решение

Задача 54975

Темы:   [ Перегруппировка площадей ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

В параллелограмме соединены середина каждой стороны с концом следующей стороны, отчего получился внутренний параллелограмм.
Докажите, что его площадь составляет ⅕ площади данного параллелограмма.

Прислать комментарий     Решение

Задача 54987

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Вспомогательные подобные треугольники ]
[ Замечательное свойство трапеции ]
Сложность: 3+
Классы: 8,9

Площадь треугольника ABC равна 16. На сторонах AB, BC и AC этого треугольника взяты соответственно точки P, Q и R, причём прямая PQ параллельна AC, а прямая BR проходит через точку пересечения прямых PC и AQ. Известно, что S – точка пересечения PQ и BR, и на отрезке BS взята точка T так, что
BT : TS : SR = 1 : 2 : 5.  Найдите площадь треугольника PTB.

Прислать комментарий     Решение

Задача 55001

Темы:   [ Отношение площадей подобных треугольников ]
[ Равные треугольники. Признаки равенства ]
Сложность: 3+
Классы: 8,9

Найдите площадь трапеции ABCD  (AD || BC),  если её основания относятся как  5 : 3,  а площадь треугольника ADM равна 50, где M – точка пересечения прямых AB и CD.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1396]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .