Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 1396]
В прямоугольном треугольнике ABC (∠C = 90°) проведены высота CD и медиана CE. Площади треугольников ABC и CDE равны соответственно 10 и 3. Найдите AB.
В прямоугольном треугольнике ABC (∠C = 90°) проведены высота CD и медиана CE. Площади треугольников ACD и ECB равны соответственно 4 и 10. Найдите AB.
В треугольнике ABC даны три стороны: AB = 26, BC = 30 и AC = 28. Найдите часть площади этого треугольника, заключённую между высотой и биссектрисой, проведёнными из вершины B.
[Луночки Гиппократа]
|
|
Сложность: 3+ Классы: 8,9
|
На гипотенузе и катетах прямоугольного треугольника как на
диаметрах построены полуокружности так, как показано на рисунке.
Докажите, что сумма площадей заштрихованных "луночек" равна
площади треугольника.
В треугольнике ABC AC ≤ 3, BC ≤ 4, SABC ≥ 6. Найдите радиус его описанной окружности.
Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 1396]