Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 22 задачи
Версия для печати
Убрать все задачи

Вычислить с шестьюдесятью десятичными знаками     (60 девяток).

Вниз   Решение


Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111.

ВверхВниз   Решение


Аналитик сделал прогноз изменения курса доллара на каждый из 12 ближайших месяцев: на сколько процентов (число, большее 0% и меньшее 100%) изменится курс за октябрь, на сколько – за ноябрь, ..., на сколько – за сентябрь. Оказалось, что про каждый месяц он верно предсказал, на сколько процентов изменится курс, но ошибся с направлением изменения (то есть, если он предсказывал, что курс увеличится на $x$%, то курс падал на $x$%, и наоборот). При этом через 12 месяцев курс совпал с прогнозом. В какую сторону в итоге изменился курс?

ВверхВниз   Решение


Автор: Анджанс А.

  Дан выпуклый четырёхугольник ABCD. Каждая его сторона разбита на k равных частей. Точки деления, принадлежащие стороне AB, соединены прямыми с точками деления, принадлежащими стороне CD, так что первая, считая от A, точка деления соединена с первой точкой деления, считая от D, вторая, считая от A, – со второй, считая от D, и т. д. (первая серия прямых), а точки деления, принадлежащие стороне BC, аналогичным образом соединены с точками деления, принадлежащими стороне DA (вторая серия прямых). Образовалось k² маленьких четырёхугольников. Из них выбрано k четырёхугольников таким образом, что каждые два выбранных четырёхугольника разделены хотя бы одной прямой первой серии и хотя бы одной прямой второй серии.
  Доказать, что сумма площадей выбранных четырёхугольников равна  1/k SABCD.

ВверхВниз   Решение


На высоте BD треугольника ABC взята такая точка E, что  ∠AEC = 90°.  Точки O1 и O2 – центры описанных окружностей треугольников AEB и CEB; F, L – середины отрезков AC и O1O2. Докажите, что точки L, E, F лежат на одной прямой.

ВверхВниз   Решение


Можно ли доску размером 5×5 заполнить доминошками размером 1×2?

ВверхВниз   Решение


Произвольный четырехугольник разделен диагоналями на четыре треугольника; площади трех из них равны 10, 20 и 30, и каждая меньше площади четвертого треугольника. Найдите площадь данного четырехугольника.

ВверхВниз   Решение


На плоскости дано 100 окружностей, составляющих связную (то есть не распадающуюся на части) фигуру.
Докажите, что эту фигуру можно нарисовать, не отрывая карандаша от бумаги и не проводя дважды одну и ту же линию.

ВверхВниз   Решение


Вычислить с пятью десятичными знаками (то есть с точностью до 0,00001) произведение:  

ВверхВниз   Решение


В треугольнике ABC проведены высоты AH, BK и CL. Докажите, что  AK·BL·CH = AL·BH·CK = HK·KL·LH.

ВверхВниз   Решение


Среди всех граней восьми одинаковых по размеру кубиков треть синие, а остальные – красные. Из этих кубиков сложили большой куб. Теперь среди видимых граней кубиков ровно треть – красные. Докажите, что из этих кубиков можно сложить куб, полностью красный снаружи.

ВверхВниз   Решение


Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата.

ВверхВниз   Решение


Буратино закопал на Поле Чудес два слитка – золотой и серебряный. В те дни, когда погода хорошая, золотой слиток увеличивается на 30%, а серебряный – на 20%. А в те дни, когда погода плохая, золотой слиток уменьшается на 30%, а серебряный – на 20%. Через неделю оказалось, что один из слитков увеличился, а другой уменьшился. Сколько дней была хорошая погода?

ВверхВниз   Решение


a1, a2, a3, a4, a5, a6 – последовательные стороны шестиугольника, все углы которого равны. Докажите, что  a1a4 = a3a6 = a5a2.

ВверхВниз   Решение


Толстый выпуск газеты стоит 30 рублей, а тонкий – дешевле. Для пенсионеров установлена скидка на одно и то же количество процентов на все газеты, поэтому тонкий выпуск той же газеты они покупают за 15 рублей. Известно, что в любом случае газета стоит целое количество рублей. Сколько стоит тонкая газета без скидки и сколько стоит толстая газета для пенсионеров?

ВверхВниз   Решение


В шестиугольнике равны углы, три главные диагонали равны между собой и шесть остальных диагоналей также равны между собой.
Верно ли, что у него равны стороны?

ВверхВниз   Решение


а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин.
б) Что можно сказать в случае десятиугольника?

ВверхВниз   Решение


В стакане находятся бактерии. Через секунду каждая из бактерий делится пополам, затем каждая из получившихся бактерий через секунду делится пополам и так далее. Через минуту стакан полон. Через какое время стакан был заполнен наполовину?

ВверхВниз   Решение


Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.

ВверхВниз   Решение


Дан треугольник ABC, в котором угол B равен 30o, AB = 4, BC = 6. Биссектриса угла B пересекает сторону AC в точке D. Найдите площадь треугольника ABD.

ВверхВниз   Решение


В треугольнике ABC известно, что $ \angle$BAC = $ \alpha$, $ \angle$BCA = $ \gamma$, AB = c. Найдите площадь треугольника ABC.

ВверхВниз   Решение


Через точки R и E, принадлежащие сторонам AB и AD параллелограмма ABCD и такие, что  AR = ⅔ AB,  AE = ⅓ AD, проведена прямая.
Найдите отношение площади параллелограмма к площади полученного треугольника.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 96]      



Задача 116349

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Признаки и свойства параллелограмма ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки подобия ]
Сложность: 3-
Классы: 8,9,10

Точка M расположена на стороне AB параллелограмма ABCD, причём  BM : MA = 1 : 2.  Отрезки DM и AC пересекаются в точке P. Известно, что площадь параллелограмма ABCD равна 1. Найдите площадь четырёхугольника BCPM.

Прислать комментарий     Решение

Задача 116357

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Четырехугольники (прочее) ]
Сложность: 3-
Классы: 8,9,10

На сторонах AB, BC, CD и AD выпуклого четырёхугольника ABCD расположены точки M, N, K и L соответственно, причём AM : MB = 3 : 2, CN : NB = 2 : 3, CK = KD и AL : LD = 1 : 2. Найдите отношение площади шестиугольника MBNKDL к площади четырёхугольника ABCD.

Прислать комментарий     Решение

Задача 54956

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Отношения площадей ]
Сложность: 3
Классы: 8,9

На сторонах AB, BC и AC треугольника ABC взяты точки C1, A1 и B1 соответственно, причём

$\displaystyle {\frac{AC_{1}}{C_{1}B}}$ = $\displaystyle {\frac{BA_{1}}{A_{1}C}}$ = $\displaystyle {\frac{CB_{1}}{B_{1}A}}$ = 2.

Найдите площадь треугольника A1B1C1, если площадь треугольника ABC равна 1.

Прислать комментарий     Решение


Задача 54954

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Через середину M стороны BC параллелограмма ABCD, площадь которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD.

Прислать комментарий     Решение

Задача 55000

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Через точки R и E, принадлежащие сторонам AB и AD параллелограмма ABCD и такие, что  AR = ⅔ AB,  AE = ⅓ AD, проведена прямая.
Найдите отношение площади параллелограмма к площади полученного треугольника.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 96]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .