Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC с основанием AC проведена медиана BM. На ней взята точка D. Докажите равенство треугольников:
  а) ABD и CBD;
  б) AMD и CMD.

Вниз   Решение


Прямоугольный треугольник ABC  (∠A = 90°)  и два квадрата BEFC и AMNC расположены так, что точки E и A лежат по разные стороны от прямой BC, а точки M и B – по одну сторону от прямой AC. Найдите расстояние между центрами квадратов, если  AB = a.

ВверхВниз   Решение


Внутри треугольника имеются две точки. Расстояние от одной из них до сторон треугольника равны 1, 3 и 15, а от другой (в том же порядке) – 4, 5 и 11.
Найдите радиус вписанной окружности данного треугольника.

ВверхВниз   Решение


С помощью циркуля и линейки проведите прямую, параллельную основаниям трапеции, так, чтобы отрезок этой прямой внутри трапеции делился бы диагоналями на три равные части.

ВверхВниз   Решение


Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E. Известно, что площадь каждого из треугольников ABE и DCE равна 1, площадь всего четырёхугольника не превосходит 4,  AD = 3.  Найдите сторону BC.

ВверхВниз   Решение


В выпуклом пятиугольнике ABCDE углы при вершинах B и D – прямые,  ∠BCA = ∠DCE,  а точка M – середина стороны AE. Доказать, что  MB = MD.

ВверхВниз   Решение


Из точки, лежащей внутри выпуклого n-угольника, проведены лучи, перпендикулярные его сторонам и пересекающие стороны (или их продолжения). На этих лучах отложены векторы a1,...,an, длины которых равны длинам соответствующих сторон. Докажите, что a1 +...+ an = 0.

ВверхВниз   Решение


Пусть a и b — целые числа. Напишем число b справа от числа a. Если число a чётное, то разделим его на 2, если оно нечётное, то сначала вычтем из него единицу, а потом разделим его на 2. Получившееся число a1 напишем под числом a. Справа от числа a1 напишем число 2b. С числом a1 проделаем ту же операцию, что и с числом a, и, получив число a2, напишем его под числом a1. Справа от числа a2 напишем число 4b и так далее. Этот процесс продолжаем до тех пор, пока не получим в левом столбце число 1. Доказать, что сумма тех чисел правого столбца, слева от которых стоят нечётные числа, равна произведению ab.

ВверхВниз   Решение


Прямоугольный треугольник ABC  (∠A = 90°)  и два квадрата BEFC и AMNC расположены так, что точки E и A лежат по разные стороны от прямой BC, а точки M и B – по разные стороны от прямой AC. Найдите расстояние между центрами квадратов, если  AB = a,  AC = b.

ВверхВниз   Решение


Докажите, что в любом неравнобедренном треугольнике биссектриса лежит между медианой и высотой, проведенными из той же вершины.

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD точка E – пересечение диагоналей. Известно, что площадь каждого из треугольников ABE и DCE равна 7, а площадь всего четырёхугольника не превосходит 28;   AD = .  Найдите сторону BC.

Вверх   Решение

Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 258]      



Задача 55014

Темы:   [ Подобные треугольники (прочее) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Трапеции (прочее) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9

Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E. Известно, что площадь каждого из треугольников ABE и DCE равна 1, площадь всего четырёхугольника не превосходит 4,  AD = 3.  Найдите сторону BC.

Прислать комментарий     Решение

Задача 55016

Темы:   [ Подобные треугольники (прочее) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Трапеции (прочее) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD точка E – пересечение диагоналей. Известно, что площадь каждого из треугольников ABE и DCE равна 7, а площадь всего четырёхугольника не превосходит 28;   AD = .  Найдите сторону BC.

Прислать комментарий     Решение

Задача 65301

Темы:   [ Математическая статистика ]
[ Средние величины ]
[ Теорема Пифагора (прямая и обратная) ]
[ Неравенство треугольника (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10,11

Длина гипотенузы прямоугольного треугольника равна 3.
  а) Рассеянный Учёный вычислил дисперсию длин сторон этого треугольника и нашёл, что она равняется 2. Не ошибся ли он в расчетах?
  б) Какое наименьшее стандартное отклонение сторон может иметь такой прямоугольный треугольник? Какие у него при этом катеты?

Прислать комментарий     Решение

Задача 65369

Темы:   [ Пересекающиеся окружности ]
[ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Неравенство треугольника (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Автор: Мухин Д.Г.

Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что  2MN < AB.

Прислать комментарий     Решение

Задача 64613

Темы:   [ Многочлены (прочее) ]
[ Производная (прочее) ]
[ Средние величины ]
[ Теорема Виета ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 10,11

Многочлен степени  $n > 1$  имеет $n$ разных корней $х_1$, $х_2$, ..., $х_n$. Его производная имеет корни $y_1$, $y_2$, ..., $y_{n-1}$. Докажите неравенство $$\frac{x_1^2 + \dots + x_n^2}{n} > \frac{y_1^2 + \dots + y_{n-1}^2}{n-1}.$$
Прислать комментарий     Решение


Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 258]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .