Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Точка $O$ – центр описанной окружности остроугольного треугольника $ABC$, $AH$ – его высота. Точка $P$ – основание перпендикуляра, опущенного из точки $A$ на прямую $CO$. Докажите, что прямая $HP$ проходит через середину стороны $AB$.

Вниз   Решение


Упростить выражение   .

ВверхВниз   Решение


Через вершины B и C треугольника ABC проведена окружность, которая пересекает сторону AB в точке K и сторону AC в точке E. Найдите AE, зная, что AK = KB = a, $ \angle$BCK = $ \alpha$, $ \angle$CBE = $ \beta$.

ВверхВниз   Решение


Найдите отношение сторон прямоугольного треугольника, если известно, что одна половина гипотенузы (от вершины до середины гипотенузы) видна из центра вписанной окружности под прямым углом.

ВверхВниз   Решение


Внутри каждой стороны параллелограмма выбрано по точке. Выбранные точки сторон, имеющих общую вершину, соединены. Докажите, что центры описанных окружностей четырех получившихся треугольников являются вершинами некоторого параллелограмма.

ВверхВниз   Решение


В весеннем туре турнира городов 2000 года старшеклассникам страны N было предложено шесть задач. Каждую задачу решило ровно 1000 школьников, но никакие два школьника не решили вместе все шесть задач. Каково наименьшее возможное число старшеклассников страны N, принявших участие в весеннем туре?

ВверхВниз   Решение


В треугольнике ABC на стороне AB взята точка L, причём  AL = 1,  BL = 3,  а на стороне BC взята точка K, делящая эту сторону в отношении
BK : KC = 3 : 2.  Точка Q пересечения прямых AK и CL отстоит от прямой BC на расстоянии 1,5. Вычислите синус угла B.

Вверх   Решение

Задачи

Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 831]      



Задача 55056

Темы:   [ Вспомогательные подобные треугольники ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC на стороне AB взята точка L, причём  AL = 1,  BL = 3,  а на стороне BC взята точка K, делящая эту сторону в отношении
BK : KC = 3 : 2.  Точка Q пересечения прямых AK и CL отстоит от прямой BC на расстоянии 1,5. Вычислите синус угла B.

Прислать комментарий     Решение

Задача 55080

Темы:   [ Средняя линия треугольника ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC, площадь которого равна 1, на медиане BK взята точка M, причём  MK = ¼ BK.  Прямая AM пересекает сторону BC в точке L.
Найдите площадь треугольника ALC.

Прислать комментарий     Решение

Задача 55091

Темы:   [ Трапеции (прочее) ]
[ Две пары подобных треугольников ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Дана трапеция ABCD, в которой  BC = a,  AD = b.  Параллельно основаниям BC и AD проведена прямая, пересекающая сторону AB в точке P, диагональ AC в точке L, диагональ BD в точке R и сторону CD в точке Q. Известно, что  PL = LR.  Найдите PQ.

Прислать комментарий     Решение

Задача 55164

Темы:   [ Симметрия помогает решить задачу ]
[ Неравенство треугольника ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

На биссектрисе внешнего угла C треугольника ABC взята точка M, отличная от C. Докажите, что  MA + MB > CA + CB.

Прислать комментарий     Решение

Задача 55407

Темы:   [ Касающиеся окружности ]
[ Описанные четырехугольники ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

К двум окружностям различного радиуса проведены общие внешние касательные AB и CD. Докажите, что четырёхугольник ABCD описанный тогда и только тогда, когда окружности касаются.

Прислать комментарий     Решение

Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 831]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .