ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан треугольник ABC. Найдите на прямой AB точку M, для которой
сумма радиусов описанных окружностей треугольников ACM и BCM
была бы наименьшей.
Дан угол XAY. Концы B и C отрезков BO и CO длиной 1
перемещаются по лучам AX и AY. Постройте четырехугольник ABOC
наибольшей площади.
Было семь ящиков. В некоторые из них положили еще по семь ящиков (не вложенных друг в друга) и т. д. В итоге стало 10 непустых ящиков. Дан угол XAY и точка O внутри его. Проведите через точку O
прямую, отсекающую от данного угла треугольник наименьшей площади.
Доказать, что n³ + 5n делится на 6 при любом целом n. Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья? Среди всех решений системы Дан равнобедренный треугольник ABC с вершиной A. Длина прыжка кузнечика равна основанию BC. Известно, что начиная движение из точки C, кузнечик за 22 прыжка оказался в точке A, приземляясь после каждого прыжка на боковой стороне треугольника ABC и чередуя стороны при каждом прыжке, кроме последнего. Найдите углы треугольника ABC, если известно, что с каждым прыжком кузнечик приближался к точке A. На стороне AD квадрата ABCD во внутреннюю сторону построен тупоугольный равнобедренный треугольник AED. Вокруг него описана окружность и проведён её диаметр AF, на стороне CD выбрана точка G так, что CG = DF. Докажите, что угол BGE меньше половины угла AED. Докажите, что сумма квадратов длин проекций сторон правильного n-угольника на любую прямую равна ½ na², где a – сторона n-угольника. На плоскости отмечена точка O. Можно ли так расположить на плоскости: а) 5 кругов; б) 4 круга, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее двух кругов?
В прямоугольном треугольнике ABC с катетами AB = 3 и BC = 4 через середины сторон AB и AC проведена окружность, касающаяся катета BC. Найдите длину отрезка гипотенузы AC, который лежит внутри этой окружности.
Отрезок, соединяющий вершину A треугольника ABC с центром Q вневписанной окружности, касающейся стороны BC, пересекает описанную окружность треугольника ABC в точке D. Докажите, что треугольник BDQ – равнобедренный.
Даны точки A(1;0;1) , B(-2;2;1) , C(2;0;3) и D(0;4;-2) . Найдите расстояние от точки D до плоскости ABC .
Докажите, что сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
|
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 449]
В выпуклом четырёхугольнике ABCD стороны равны соответственно: AB = 10, BC = 14, CD = 11, AD = 5. Найдите угол между его диагоналями.
Найдите косинусы углов трапеции с основаниями 3 и 7 и боковыми сторонами 2 и 5.
Докажите, что сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
Данной окружности касаются две равных меньших окружностей — одна изнутри, другая извне, причём дуга между точками касания содержит 60o. Радиусы меньших окружностей равны r, радиус большей окружности равен R. Найдите расстояние между центрами меньших окружностей.
На продолжении боковой стороны AB равнобедренного треугольника
ABC за вершину A взята точка D, причём AD = 2AB. Известно, что
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 449]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке