ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

   Решение

Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 448]      



Задача 116382

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Теорема косинусов ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

В выпуклом четырёхугольнике ABCD стороны равны соответственно:   AB = 10,  BC = 14,  CD = 11,  AD = 5.   Найдите угол между его диагоналями.

Прислать комментарий     Решение

Задача 54707

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Найдите косинусы углов трапеции с основаниями 3 и 7 и боковыми сторонами 2 и 5.

Прислать комментарий     Решение


Задача 55264

Темы:   [ Теорема о сумме квадратов диагоналей ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Докажите, что сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

Прислать комментарий     Решение


Задача 52908

Темы:   [ Касающиеся окружности ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Данной окружности касаются две равных меньших окружностей — одна изнутри, другая извне, причём дуга между точками касания содержит 60o. Радиусы меньших окружностей равны r, радиус большей окружности равен R. Найдите расстояние между центрами меньших окружностей.

Прислать комментарий     Решение


Задача 54702

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

На продолжении боковой стороны AB равнобедренного треугольника ABC за вершину A взята точка D, причём AD = 2AB. Известно, что $ \angle$BAC = 120o. Докажите, что треугольник BDC — равнобедренный.

Прислать комментарий     Решение


Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 448]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .