Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

В выпуклом четырёхугольнике ABCD выполнены соотношения  AB = BD,  ∠ABD = ∠DBC.  На диагонали BD нашлась такая точка K, что  BK = BC.
Докажите, что  ∠KAD = ∠KCD.

Вниз   Решение


Прямая l пересекает стороны AB и AD и диагональ AC параллелограмма ABCD в точках E, F и G соответственно. Докажите, что  AB/AE + AD/AF = AC/AG.

ВверхВниз   Решение


В точках A и B прямой, по одну сторону от неё, восстановлены два перпендикуляра  AA1 = a  и   BB1 = b.
Докажите, что точка пересечения прямых AB1 и A1B будет находиться на одном и том же расстоянии от прямой AB независимо от положения точек A и B.

ВверхВниз   Решение


В ряд выписаны несколько нулей и единиц. Рассмотрим пары цифр в этом ряду (не только соседних), где левая цифра равна 1, а правая 0. Пусть среди этих пар ровно M таких, что между единицей и нулем этой пары стоит чётное число цифр, и ровно N таких, что между единицей и нулем этой пары стоит нечётное число цифр. Докажите, что  M ≥ N.

ВверхВниз   Решение


(sin x, sin y, sin z)  – возрастающая арифметическая прогрессия. Может ли последовательность  (cos x, cos y, cos z)  также являться арифметической прогрессией?

ВверхВниз   Решение


Решите уравнение

arcsin$\displaystyle {\dfrac{x^2-8}{8}}$ = 2 arcsin$\displaystyle {\dfrac{x}{4}}$ - $\displaystyle {\dfrac{\pi}{2}}$.


ВверхВниз   Решение


Пусть c — наибольшая сторона треугольника со сторонами a, b, c. Докажите, что если a2 + b2 > c2, то треугольник остроугольный, а если a2 + b2 < c2, — тупоугольный.

ВверхВниз   Решение


На плоскости нарисовали 10 равных отрезков и отметили все их точки пересечения. Оказалось, что каждая точка пересечения делит любой проходящий через неё отрезок в отношении  3 : 4.  Каково наибольшее возможное число отмеченных точек?

ВверхВниз   Решение


В выпуклом четырехугольнике АВСD точка Е — середина CD, F — середина АD, K — точка пересечения АС и ВЕ. Докажите, что площадь треугольника BKF в два раза меньше площади треугольника АВС.

ВверхВниз   Решение


Автор: Анджанс А.

64 друга одновременно узнали 64 новости, причём каждый узнал одну новость. Они стали звонить друг другу и обмениваться новостями. Каждый разговор длится 1 час. Какое минимальное количество часов необходимо, чтобы все узнали все новости? (Во время одного разговора можно передать сколько угодно новостей.)

ВверхВниз   Решение


Точка К – середина гипотенузы АВ прямоугольного равнобедренного треугольника ABC. Точки L и М выбраны на катетах ВС и АС соответственно так, что  BL = СМ.  Докажите, что треугольник LMK – также прямоугольный равнобедренный.

ВверхВниз   Решение


Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60° (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в вершину C.

ВверхВниз   Решение


Диагональ параллелограмма делит его угол на части в 30o и 45o. Найдите отношение сторон параллелограмма.

ВверхВниз   Решение


Высота трапеции ABCD равна 7, основания AD и BC равны соответственно 8 и 6. Через точку E, лежащую на стороне CD, проведена прямая BE, которая делит диагональ AC в точке O в отношении  AO : OC = 3 : 2.  Найдите площадь треугольника OEC.

ВверхВниз   Решение


Есть доска 1×1000, вначале пустая, и куча из n фишек. Двое ходят по очереди. Первый своим ходом "выставляет" на доску не более 17 фишек по одной на любое свободное поле (он может взять все 17 из кучи, а может часть – из кучи, а часть – переставить на доске). Второй снимает с доски любую серию фишек (серия – это несколько фишек, стоящих подряд, то есть без свободных полей между ними) и кладёт их обратно в кучу. Первый выигрывает, если ему удастся выставить все фишки в ряд без пробелов.
  а) Докажите, что при  n = 98  первый всегда может выиграть.
  б) При каком наибольшем n первый всегда может выиграть?

ВверхВниз   Решение


Четырёхугольник АВСD вписан в окружность, I – центр вписанной окружности треугольника ABD.
Найдите наименьшее значение BD, если  AI = BC = CD = 2.

ВверхВниз   Решение


Через центр квадрата проведены две перпендикулярные прямые. Докажите, что их точки пересечения со сторонами квадрата также образуют квадрат.

Вверх   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 352]      



Задача 54877

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные равные треугольники ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

Около треугольника ABC описана окружность. Продолжение биссектрисы AD треугольника ABC пересекает эту окружность в точке E, причём AE – диаметр данной окружности. Найдите отношение отрезков EC и AB, если косинус угла ABC равен 1/3.

Прислать комментарий     Решение

Задача 54878

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные равные треугольники ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

Около треугольника ABC описана окружность. Продолжение биссектрисы BM треугольника ABC пересекает эту окружность в точке N, причём BN – диаметр данной окружности. Найдите отношение отрезков BC и AN, если косинус угла ACB равен 1/5.

Прислать комментарий     Решение

Задача 55001

Темы:   [ Отношение площадей подобных треугольников ]
[ Равные треугольники. Признаки равенства ]
Сложность: 3+
Классы: 8,9

Найдите площадь трапеции ABCD  (AD || BC),  если её основания относятся как  5 : 3,  а площадь треугольника ADM равна 50, где M – точка пересечения прямых AB и CD.

Прислать комментарий     Решение

Задача 55720

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 8,9

Через центр квадрата проведены две перпендикулярные прямые. Докажите, что их точки пересечения со сторонами квадрата также образуют квадрат.

Прислать комментарий     Решение

Задача 56478

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 9

Прямая l пересекает стороны AB и AD и диагональ AC параллелограмма ABCD в точках E, F и G соответственно. Докажите, что  AB/AE + AD/AF = AC/AG.

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .