ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Докажите, что площадь четырехугольника, образованного серединами сторон выпуклого четырехугольника ABCD, равна половине площади ABCD. б) Докажите, что если диагонали выпуклого четырехугольника равны, то его площадь равна произведению длин отрезков, соединяющих середины противоположных сторон. Решение |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 2247]
В выпуклом четырёхугольнике ACBD, площадь которого равна 25, проведены диагонали. Известно, что SABC = 2 SBCD, а SABD = 3 SACD. Найдите площади треугольников ABC, ACD, ADB и BCD.
На диагонали BD параллелограмма ABCD взята точка K. Прямая AK пересекает прямые BC и CD в точках L и M. Докажите, что AK² = LK·KM.
Точки A и B высекают на окружности с центром O дугу величиной 60°. На этой дуге взята точка M.
б) Докажите, что если диагонали выпуклого четырехугольника равны, то его площадь равна произведению длин отрезков, соединяющих середины противоположных сторон.
Сторона квадрата равна 1. Через его центр проведена прямая. Вычислите сумму квадратов расстояний от четырёх вершин квадрата до этой прямой.
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 2247] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|