ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что
С помощью циркуля и линейки постройте четырёхугольник по диагоналям, углу между ними и двум каким-нибудь сторонам.
Угол, изготовленный из прозрачного материала,
двигают так, что две непересекающиеся окружности касаются
его сторон внутренним образом. Докажите, что на нем
можно отметить точку, которая описывает дугу окружности.
На сторонах BC, CA и AB треугольника ABC
взяты точки A1, B1 и C1 так, что отрезки AA1, BB1 и CC1
пересекаются в одной точке. Прямые A1B1 и A1C1 пересекают
прямую, проходящую через вершину A параллельно стороне BC, в
точках C2 и B2 соответственно. Докажите, что AB2 = AC2.
Окружности с центрами O1 и O2 касаются внешним образом в точке
K. Некоторая прямая касается этих окружностей в различных точках A
и B и пересекает их общую касательную, проходящую через точку K, в
точке M. Докажите, что
Четырёхугольник ABCD описан около окружности с центром O.
Докажите, что
В треугольнике ABC известно, что AB < BC < AC, а один из углов вдвое меньше другого и втрое меньше третьего. Найдите угол при вершине A. На сторонах треугольника ABC внешним образом
построены треугольники ABC', AB'C и A'BC, причем сумма
углов при вершинах A', B' и C' кратна
180o. Докажите,
что описанные окружности построенных треугольников пересекаются в
одной точке.
|
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 1282]
Дан треугольник ABC. На его стороне AB
выбирается точка P и через нее проводятся прямые PM и PN,
параллельные AC и BC соответственно (точки M и N лежат
на сторонах BC и AC); Q — точка пересечения описанных
окружностей треугольников APN и BPM. Докажите, что все
прямые PQ проходят через фиксированную точку.
На сторонах треугольника ABC внешним образом
построены треугольники ABC', AB'C и A'BC, причем сумма
углов при вершинах A', B' и C' кратна
180o. Докажите,
что описанные окружности построенных треугольников пересекаются в
одной точке.
а) На сторонах BC, CA и AB треугольника ABC
(или на их продолжениях) взяты точки A1, B1 и C1, отличные
от вершин треугольника. Докажите, что описанные окружности
треугольников
AB1C1, A1BC1 и A1B1C пересекаются
в одной точке.
Пусть H — точка пересечения высот
треугольника ABC, а AA' — диаметр его описанной окружности.
Докажите, что отрезок A'H делит сторону BC пополам.
Через вершины A и B треугольника ABC проведены
две параллельные прямые, а прямые m и n симметричны
им относительно биссектрис соответствующих углов.
Докажите, что точка пересечения прямых m и n лежит на
описанной окружности треугольника ABC.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 1282]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке