ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах AC и BC треугольника ABC внешним образом построены квадраты ACA1A2 и BCB1B2. Докажите, что прямые  A1B, A2B2 и AB1 пересекаются в одной точке.

   Решение

Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 1275]      



Задача 56553

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5
Классы: 7,8

Многоугольник  A1A2...A2n вписанный. Про все пары его противоположных сторон, кроме одной, известно, что они параллельны. Докажите, что при n нечетном оставшаяся пара сторон тоже параллельна, а при n четном оставшаяся пара сторон равна по длине.
Прислать комментарий     Решение


Задача 56605

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5
Классы: 8,9

Окружность S1 с диаметром AB пересекает окружность S2 с центром A в точках C и D. Через точку B проведена прямая, пересекающая S2 в точке M, лежащей внутри S1, а S1 в точке N. Докажите, что  MN2 = CN . ND.
Прислать комментарий     Решение


Задача 56626

Тема:   [ Три окружности пересекаются в одной точке ]
Сложность: 5
Классы: 8,9

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1. Докажите, что если треугольники A1B1C1 и ABC подобны и противоположно ориентированы, то описанные окружности треугольников  AB1C1, A1BC1 и A1B1C проходят через центр описанной окружности треугольника ABC.
Прислать комментарий     Решение


Задача 56637

Тема:   [ Вписанный угол (прочее) ]
Сложность: 5
Классы: 8,9

На сторонах AC и BC треугольника ABC внешним образом построены квадраты ACA1A2 и BCB1B2. Докажите, что прямые  A1B, A2B2 и AB1 пересекаются в одной точке.
Прислать комментарий     Решение


Задача 56638

Тема:   [ Вписанный угол (прочее) ]
Сложность: 5
Классы: 8,9

Окружности S1 и S2 пересекаются в точках A и B, причем касательные к S1 в этих точках являются радиусами S2. На внутренней дуге S1 взята точка C и соединена с точками A и B прямыми. Докажите, что вторые точки пересечения этих прямых с S2 являются концами одного диаметра.
Прислать комментарий     Решение


Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .