|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Разобьём все натуральные числа на группы так, чтобы в первой группе было одно число, во второй — два, в третьей — три и т.д. Можно ли это сделать таким образом, чтобы из суммы чисел в каждой группе нацело извлекался корень седьмой степени? К двум окружностям различного радиуса проведены общие внешние касательные AB и CD. Докажите, что четырехугольник ABCD описанный тогда и только тогда, когда окружности касаются. |
Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 772]
Даны прямая l и точки A и B по разные стороны от неё. С помощью циркуля и линейки постройте такую точку M, что угол между AM и l в два раза меньше угла между BM и l, если известно, что эти углы не имеют общих сторон.
Дана окружность ω и точка A вне её. Через A проведены две прямые, одна из которых пересекает ω в точках B и C, а другая – в точках D и E (D лежит между A и E). Прямая, проходящая через D и параллельная BC, вторично пересекает ω в точке F, а прямая AF – в точке T. Пусть M – точка пересечения прямых ET и BC, а N – точка, симметричная A относительно M. Докажите, что описанная окружность треугольника DEN проходит через середину отрезка BC.
Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 772] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|