ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На шахматной доске выбрана клетка. Сумма квадратов расстояний от её центра до центров всех чёрных клеток обозначена через a, а до центров всех белых клеток – через b. Докажите, что a = b. В треугольник с периметром 2p вписана окружность. К этой окружности проведена касательная, параллельная стороне треугольника. Найдите наибольшую возможную длину отрезка этой касательной, заключённого внутри треугольника. Найдите производящие функции последовательностей многочленов Чебышева первого и второго рода:
а) В трёхзначном числе зачеркнули первую цифру слева, затем полученное двузначное число умножили на 7 и получили исходное трёхзначное число. Найдите такое число. На прямой даны четыре точки A, B, C, D в указанном
порядке. Постройте точку M, из которой отрезки AB, BC, CD видны под
равными углами.
Найдите расстояние между точками касания окружностей, вписанных в треугольники ABC и CDA, со стороной AC, если а) AB = 5, BC = 7, CD = DA; б) AB = 7, BC = CD, DA = 9.
На стороне BC равностороннего треугольника ABC взята точка M, а на продолжении стороны AC за точку C – точка N, причём AM = MN. 12 команд сыграли турнир по волейболу в один круг. Две команды одержали ровно по 7 побед. Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности. Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр. Докажите, что
С помощью циркуля и линейки постройте окружность, касающуюся сторон данного угла, причём одной из них — в данной точке.
Найдите первые 99 знаков после запятой в разложении числа На сторонах треугольника ABC взяты точки A1, B1 и C1 так, что AB1 : B1C = cn : an, BC1 : C1A = an : bn и CA1 : A1B = bn : cn (a, b, c – длины сторон треугольника). Описанная окружность треугольника A1B1C1 высекает на сторонах треугольника ABC отрезки длиной ±x, ±y и ±z (знаки выбираются в соответствии с ориентацией треугольника). Докажите, что |
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 401]
На сторонах треугольника ABC взяты точки A1, B1 и C1 так, что AB1 : B1C = cn : an, BC1 : C1A = an : bn и CA1 : A1B = bn : cn (a, b, c – длины сторон треугольника). Описанная окружность треугольника A1B1C1 высекает на сторонах треугольника ABC отрезки длиной ±x, ±y и ±z (знаки выбираются в соответствии с ориентацией треугольника). Докажите, что
Рассмотрим графики функций y = x² + px + q, которые пересекают оси координат в трёх различных точках.
Внутри окружности расположен равносторонний N-угольник. Каждую его сторону продлевают в обе стороны до пересечения с окружностью, получая по два новых отрезка, расположенных вне многоугольника. Затем некоторые из 2N полученных отрезков красятся в красный цвет, а остальные – в синий цвет. Докажите, что можно раскрасить эти отрезки так, чтобы сумма длин красных отрезков равнялась сумме длин синих.
Пусть R1, R2 и R3 – радиусы трёх окружностей, каждая из которых проходит через вершину треугольника и касается противолежащей стороны.
На данной прямой l, проходящей через центр O данной окружности, фиксирована точка C (расположенная внутри окружности — прим. ред.). Точки A и A' расположены на окружности по одну сторону от l так, что углы, образованные прямыми AC и A'C с прямой l, равны. Обозначим через B точку пересечения прямых AA' и l. Доказать, что положение точки B не зависит от точки A.
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 401]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке