Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Автор: Анджанс А.

На шахматной доске выбрана клетка. Сумма квадратов расстояний от её центра до центров всех чёрных клеток обозначена через a, а до центров всех белых клеток – через b. Докажите, что  a = b.

Вниз   Решение


В треугольник с периметром 2p вписана окружность. К этой окружности проведена касательная, параллельная стороне треугольника. Найдите наибольшую возможную длину отрезка этой касательной, заключённого внутри треугольника.

ВверхВниз   Решение


Найдите производящие функции последовательностей многочленов Чебышева первого и второго рода:

Определения многочленов Чебышева можно найти в справочнике.

ВверхВниз   Решение


а) В трёхзначном числе зачеркнули первую цифру слева, затем полученное двузначное число умножили на 7 и получили исходное трёхзначное число. Найдите такое число.
б) В трёхзначном числе зачеркнули среднюю цифру и получили число в 6 раз меньше исходного. Найдите такое трёхзначное число.

ВверхВниз   Решение


На прямой даны четыре точки A, B, C, D в указанном порядке. Постройте точку M, из которой отрезки AB, BC, CD видны под равными углами.

ВверхВниз   Решение


Найдите расстояние между точками касания окружностей, вписанных в треугольники ABC и CDA, со стороной AC, если

а) AB = 5, BC = 7, CD = DA;

б) AB = 7, BC = CD, DA = 9.

ВверхВниз   Решение


На стороне BC равностороннего треугольника ABC взята точка M, а на продолжении стороны AC за точку C – точка N, причём  AM = MN.
Докажите, что  BM = CN.

ВверхВниз   Решение


12 команд сыграли турнир по волейболу в один круг. Две команды одержали ровно по 7 побед.
Доказать, что найдутся такие команды А, В, С, что А выиграла у В, В выиграла у С, а С – у А.

ВверхВниз   Решение


Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности.

ВверхВниз   Решение


Автор: Фольклор

Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр.

ВверхВниз   Решение


Докажите, что
а)  S3 $ \leq$ ($ \sqrt{3}$/4)3(abc)2;
б)  3hahbhc $ \leq$ 43$ \sqrt{S}$ $ \leq$ 3rarbrc.

ВверхВниз   Решение


С помощью циркуля и линейки постройте окружность, касающуюся сторон данного угла, причём одной из них — в данной точке.

ВверхВниз   Решение


Найдите первые 99 знаков после запятой в разложении числа   .

ВверхВниз   Решение


На сторонах треугольника ABC взяты точки A1, B1 и C1 так, что  AB1 : B1C = cn : an,  BC1 : C1A = an : bn  и  CA1 : A1B = bn : cn  (a, b, c – длины сторон треугольника). Описанная окружность треугольника A1B1C1 высекает на сторонах треугольника ABC отрезки длиной ±x, ±y и ±z (знаки выбираются в соответствии с ориентацией треугольника). Докажите, что  

Вверх   Решение

Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 401]      



Задача 56892

Темы:   [ Треугольники (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9

На сторонах треугольника ABC взяты точки A1, B1 и C1 так, что  AB1 : B1C = cn : an,  BC1 : C1A = an : bn  и  CA1 : A1B = bn : cn  (a, b, c – длины сторон треугольника). Описанная окружность треугольника A1B1C1 высекает на сторонах треугольника ABC отрезки длиной ±x, ±y и ±z (знаки выбираются в соответствии с ориентацией треугольника). Докажите, что  

Прислать комментарий     Решение

Задача 60935

Темы:   [ Квадратный трехчлен (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 9,10,11

Рассмотрим графики функций  y = x² + px + q,  которые пересекают оси координат в трёх различных точках.
Докажите, что все окружности, описанные около треугольников с вершинами в этих точках, имеют общую точку.

Прислать комментарий     Решение

Задача 65163

Темы:   [ Многоугольники (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9,10

Автор: Фольклор

Внутри окружности расположен равносторонний N-угольник. Каждую его сторону продлевают в обе стороны до пересечения с окружностью, получая по два новых отрезка, расположенных вне многоугольника. Затем некоторые из 2N полученных отрезков красятся в красный цвет, а остальные – в синий цвет. Докажите, что можно раскрасить эти отрезки так, чтобы сумма длин красных отрезков равнялась сумме длин синих.

Прислать комментарий     Решение

Задача 66355

Темы:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Хорды и секущие (прочее) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4-
Классы: 9,10,11

Пусть R1, R2 и R3 – радиусы трёх окружностей, каждая из которых проходит через вершину треугольника и касается противолежащей стороны.
Докажите, что  1/R1 + 1/R2 + 1/R31/r,  где r – радиус вписанной окружности этого треугольника.

Прислать комментарий     Решение

Задача 78301

Темы:   [ Симметрия помогает решить задачу ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 11

На данной прямой l, проходящей через центр O данной окружности, фиксирована точка C (расположенная внутри окружности — прим. ред.). Точки A и A' расположены на окружности по одну сторону от l так, что углы, образованные прямыми AC и A'C с прямой l, равны. Обозначим через B точку пересечения прямых AA' и l. Доказать, что положение точки B не зависит от точки A.
Прислать комментарий     Решение


Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .